Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5

A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo 6 O 24 ] 5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2023-02, Vol.29 (2), p.57-57, Article 57
Hauptverfasser: Almi, Meriem, Zhou, Meijuan, Saal, Amar, Springborg, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 2
container_start_page 57
container_title Journal of molecular modeling
container_volume 29
creator Almi, Meriem
Zhou, Meijuan
Saal, Amar
Springborg, Michael
description A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo 6 O 24 ] 5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step. Graphical abstract
doi_str_mv 10.1007/s00894-023-05458-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887631289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887631289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c5a4ac9820c838195be5db9ef1156eb553788f5a87e86148adcf32a28fe715013</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqvSP8ABWeLCxTD-do5VBaVSq17gVFWW40y2qbLxEntL01-PyxaQOMDJ1swzr-V5CHnN4T0HsB8ygGsUAyEZaKUdW56RFTTKMV1rz8mKGw5MNAoOyFHOtwDAhTZaiJfkQBrLQVi1It8vMN6EachliHSY8rC-KbleSqIB59TWarofulCGO6RxxHAX1khTT9fjEtNIYyhhXB6wo-1Cw0SPpw7nnCZWli3SbRqXdJ82WKFQkF6dXSRzKdS1fkVe9GHMePR0HpKvnz5-OfnMzi9Pz06Oz1mU0hUWdVAhNk5AdNLxRreou7bBnnNtsNVaWud6HZxFZ7hyoYu9FEG4Hi3XwOUhebfP3c7p2w5z8ZshRxzHMGHaZS-cs0Zy4Zr_o7YuzWkrbUXf_oXept081Y88UmC5aYyqlNhTcU45z9j77Txswrx4Dv5Rot9L9FWY_ynRL3XozVP0rt1g93vkl7IKyD2Qa2ta4_zn7X_E_gC8xKe2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770716964</pqid></control><display><type>article</type><title>Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5</title><source>Springer Nature - Complete Springer Journals</source><creator>Almi, Meriem ; Zhou, Meijuan ; Saal, Amar ; Springborg, Michael</creator><creatorcontrib>Almi, Meriem ; Zhou, Meijuan ; Saal, Amar ; Springborg, Michael</creatorcontrib><description>A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo 6 O 24 ] 5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step. Graphical abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-023-05458-y</identifier><identifier>PMID: 36710274</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetonitrile ; catalysts ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Cleavage ; cleavage (chemistry) ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Covalent bonds ; energy ; Heteropoly anions ; hydrogen ; Hydrogen atoms ; Hydroxyl groups ; Iodine ; Molecular Medicine ; Original Paper ; Oxidation ; oxygen ; Oxygen atoms ; Polyoxometallates ; solvents ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2023-02, Vol.29 (2), p.57-57, Article 57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c5a4ac9820c838195be5db9ef1156eb553788f5a87e86148adcf32a28fe715013</citedby><cites>FETCH-LOGICAL-c338t-c5a4ac9820c838195be5db9ef1156eb553788f5a87e86148adcf32a28fe715013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-023-05458-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-023-05458-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36710274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almi, Meriem</creatorcontrib><creatorcontrib>Zhou, Meijuan</creatorcontrib><creatorcontrib>Saal, Amar</creatorcontrib><creatorcontrib>Springborg, Michael</creatorcontrib><title>Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo 6 O 24 ] 5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step. Graphical abstract</description><subject>Acetonitrile</subject><subject>catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cleavage</subject><subject>cleavage (chemistry)</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Covalent bonds</subject><subject>energy</subject><subject>Heteropoly anions</subject><subject>hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydroxyl groups</subject><subject>Iodine</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>oxygen</subject><subject>Oxygen atoms</subject><subject>Polyoxometallates</subject><subject>solvents</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EoqvSP8ABWeLCxTD-do5VBaVSq17gVFWW40y2qbLxEntL01-PyxaQOMDJ1swzr-V5CHnN4T0HsB8ygGsUAyEZaKUdW56RFTTKMV1rz8mKGw5MNAoOyFHOtwDAhTZaiJfkQBrLQVi1It8vMN6EachliHSY8rC-KbleSqIB59TWarofulCGO6RxxHAX1khTT9fjEtNIYyhhXB6wo-1Cw0SPpw7nnCZWli3SbRqXdJ82WKFQkF6dXSRzKdS1fkVe9GHMePR0HpKvnz5-OfnMzi9Pz06Oz1mU0hUWdVAhNk5AdNLxRreou7bBnnNtsNVaWud6HZxFZ7hyoYu9FEG4Hi3XwOUhebfP3c7p2w5z8ZshRxzHMGHaZS-cs0Zy4Zr_o7YuzWkrbUXf_oXept081Y88UmC5aYyqlNhTcU45z9j77Txswrx4Dv5Rot9L9FWY_ynRL3XozVP0rt1g93vkl7IKyD2Qa2ta4_zn7X_E_gC8xKe2</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Almi, Meriem</creator><creator>Zhou, Meijuan</creator><creator>Saal, Amar</creator><creator>Springborg, Michael</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230201</creationdate><title>Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5</title><author>Almi, Meriem ; Zhou, Meijuan ; Saal, Amar ; Springborg, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c5a4ac9820c838195be5db9ef1156eb553788f5a87e86148adcf32a28fe715013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetonitrile</topic><topic>catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cleavage</topic><topic>cleavage (chemistry)</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Covalent bonds</topic><topic>energy</topic><topic>Heteropoly anions</topic><topic>hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydroxyl groups</topic><topic>Iodine</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>oxygen</topic><topic>Oxygen atoms</topic><topic>Polyoxometallates</topic><topic>solvents</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almi, Meriem</creatorcontrib><creatorcontrib>Zhou, Meijuan</creatorcontrib><creatorcontrib>Saal, Amar</creatorcontrib><creatorcontrib>Springborg, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almi, Meriem</au><au>Zhou, Meijuan</au><au>Saal, Amar</au><au>Springborg, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>29</volume><issue>2</issue><spage>57</spage><epage>57</epage><pages>57-57</pages><artnum>57</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>A computational investigation of the aerobic oxidative C–C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo 6 O 24 ] 5− in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36710274</pmid><doi>10.1007/s00894-023-05458-y</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2023-02, Vol.29 (2), p.57-57, Article 57
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2887631289
source Springer Nature - Complete Springer Journals
subjects Acetonitrile
catalysts
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Cleavage
cleavage (chemistry)
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Covalent bonds
energy
Heteropoly anions
hydrogen
Hydrogen atoms
Hydroxyl groups
Iodine
Molecular Medicine
Original Paper
Oxidation
oxygen
Oxygen atoms
Polyoxometallates
solvents
Theoretical and Computational Chemistry
title Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo6O24]5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20aerobic%20oxidative%20cleavage%20of%20glycol%20catalyzed%20by%20an%20Anderson-type%20polyoxometalate%20%5BIMo6O24%5D5&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Almi,%20Meriem&rft.date=2023-02-01&rft.volume=29&rft.issue=2&rft.spage=57&rft.epage=57&rft.pages=57-57&rft.artnum=57&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-023-05458-y&rft_dat=%3Cproquest_cross%3E2887631289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770716964&rft_id=info:pmid/36710274&rfr_iscdi=true