Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol

The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2023-11, Vol.236, p.116790-116790, Article 116790
Hauptverfasser: Gnanasekaran, Lalitha, Manoj, Devaraj, Rajendran, Saravanan, Gracia, F., Jalil, A.A., Chen, Wei-Hsin, Soto-Moscoso, Matias, Gracia-Pinilla, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116790
container_issue
container_start_page 116790
container_title Environmental research
container_volume 236
creator Gnanasekaran, Lalitha
Manoj, Devaraj
Rajendran, Saravanan
Gracia, F.
Jalil, A.A.
Chen, Wei-Hsin
Soto-Moscoso, Matias
Gracia-Pinilla, M.A.
description The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV–vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants. •The black NiO/Ni2O3 nanoflowers were synthesized by thermal decomposition method.•The synthesized black NiO/Ni2O3 has showed better visible light activity.•The NiO/Ni2O3 nanoflowers showed mesopores and enhanced surface area.•Visible light activity is enabled by the produced electron-hole separation mechanisms.
doi_str_mv 10.1016/j.envres.2023.116790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887615573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123015943</els_id><sourcerecordid>2844087206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c3eb477b5f9fd344cc3571da10de5d62090a595ba37d7fb98df974eeabe7e6173</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWB__wEWWbqYmk8mk2QhSfIG2G12HTHLTpqSTMZlW-u-dMq7FzT1cOOfA4UPohpIpJbS-20yh3SfI05KUbEppLSQ5QRNKZF0QydkpmhBCWSEZp-foIufN8FLOyAT5d8ixiynuMl745d3Cl0uGW91GF-I3pIxdTNjpfUy6CYD3PvujBr9a97hbxz4a3etw6L3BFlZJW9372OLocFWYdRiquzW0MVyhM6dDhutfvUSfT48f85fibfn8On94KwwTZT9caCohGu6ks6yqjGFcUKspscBtXRJJNJe80UxY4Ro5s06KCkA3IKCmgl2i27G3S_FrB7lXW58NhKBbGFaqcjYTNeVcsH9Yq4rMREnqwVqNVpNizgmc6pLf6nRQlKgjBLVRIwR1hKBGCEPsfozBsHjvIalsPLQGrE9gemWj_7vgB-0Wk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844087206</pqid></control><display><type>article</type><title>Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol</title><source>Elsevier ScienceDirect Journals</source><creator>Gnanasekaran, Lalitha ; Manoj, Devaraj ; Rajendran, Saravanan ; Gracia, F. ; Jalil, A.A. ; Chen, Wei-Hsin ; Soto-Moscoso, Matias ; Gracia-Pinilla, M.A.</creator><creatorcontrib>Gnanasekaran, Lalitha ; Manoj, Devaraj ; Rajendran, Saravanan ; Gracia, F. ; Jalil, A.A. ; Chen, Wei-Hsin ; Soto-Moscoso, Matias ; Gracia-Pinilla, M.A.</creatorcontrib><description>The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV–vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants. •The black NiO/Ni2O3 nanoflowers were synthesized by thermal decomposition method.•The synthesized black NiO/Ni2O3 has showed better visible light activity.•The NiO/Ni2O3 nanoflowers showed mesopores and enhanced surface area.•Visible light activity is enabled by the produced electron-hole separation mechanisms.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.116790</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>4-Chlorophenol ; Black nickel oxide ; chemical precipitation ; hysteresis ; industrial effluents ; light ; Mesopores ; Nanoflowers ; nickel oxide ; photocatalysis ; photocatalysts ; porosity ; porous media ; surface area ; Thermal decomposition ; thermal degradation ; transmission electron microscopy ; ultraviolet-visible spectroscopy ; X-ray diffraction ; X-ray photoelectron spectroscopy</subject><ispartof>Environmental research, 2023-11, Vol.236, p.116790-116790, Article 116790</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c3eb477b5f9fd344cc3571da10de5d62090a595ba37d7fb98df974eeabe7e6173</citedby><cites>FETCH-LOGICAL-c372t-c3eb477b5f9fd344cc3571da10de5d62090a595ba37d7fb98df974eeabe7e6173</cites><orcidid>0000-0002-3771-4694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013935123015943$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gnanasekaran, Lalitha</creatorcontrib><creatorcontrib>Manoj, Devaraj</creatorcontrib><creatorcontrib>Rajendran, Saravanan</creatorcontrib><creatorcontrib>Gracia, F.</creatorcontrib><creatorcontrib>Jalil, A.A.</creatorcontrib><creatorcontrib>Chen, Wei-Hsin</creatorcontrib><creatorcontrib>Soto-Moscoso, Matias</creatorcontrib><creatorcontrib>Gracia-Pinilla, M.A.</creatorcontrib><title>Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol</title><title>Environmental research</title><description>The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV–vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants. •The black NiO/Ni2O3 nanoflowers were synthesized by thermal decomposition method.•The synthesized black NiO/Ni2O3 has showed better visible light activity.•The NiO/Ni2O3 nanoflowers showed mesopores and enhanced surface area.•Visible light activity is enabled by the produced electron-hole separation mechanisms.</description><subject>4-Chlorophenol</subject><subject>Black nickel oxide</subject><subject>chemical precipitation</subject><subject>hysteresis</subject><subject>industrial effluents</subject><subject>light</subject><subject>Mesopores</subject><subject>Nanoflowers</subject><subject>nickel oxide</subject><subject>photocatalysis</subject><subject>photocatalysts</subject><subject>porosity</subject><subject>porous media</subject><subject>surface area</subject><subject>Thermal decomposition</subject><subject>thermal degradation</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><subject>X-ray diffraction</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEUhYMoWB__wEWWbqYmk8mk2QhSfIG2G12HTHLTpqSTMZlW-u-dMq7FzT1cOOfA4UPohpIpJbS-20yh3SfI05KUbEppLSQ5QRNKZF0QydkpmhBCWSEZp-foIufN8FLOyAT5d8ixiynuMl745d3Cl0uGW91GF-I3pIxdTNjpfUy6CYD3PvujBr9a97hbxz4a3etw6L3BFlZJW9372OLocFWYdRiquzW0MVyhM6dDhutfvUSfT48f85fibfn8On94KwwTZT9caCohGu6ks6yqjGFcUKspscBtXRJJNJe80UxY4Ro5s06KCkA3IKCmgl2i27G3S_FrB7lXW58NhKBbGFaqcjYTNeVcsH9Yq4rMREnqwVqNVpNizgmc6pLf6nRQlKgjBLVRIwR1hKBGCEPsfozBsHjvIalsPLQGrE9gemWj_7vgB-0Wk8w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Gnanasekaran, Lalitha</creator><creator>Manoj, Devaraj</creator><creator>Rajendran, Saravanan</creator><creator>Gracia, F.</creator><creator>Jalil, A.A.</creator><creator>Chen, Wei-Hsin</creator><creator>Soto-Moscoso, Matias</creator><creator>Gracia-Pinilla, M.A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3771-4694</orcidid></search><sort><creationdate>20231101</creationdate><title>Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol</title><author>Gnanasekaran, Lalitha ; Manoj, Devaraj ; Rajendran, Saravanan ; Gracia, F. ; Jalil, A.A. ; Chen, Wei-Hsin ; Soto-Moscoso, Matias ; Gracia-Pinilla, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c3eb477b5f9fd344cc3571da10de5d62090a595ba37d7fb98df974eeabe7e6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4-Chlorophenol</topic><topic>Black nickel oxide</topic><topic>chemical precipitation</topic><topic>hysteresis</topic><topic>industrial effluents</topic><topic>light</topic><topic>Mesopores</topic><topic>Nanoflowers</topic><topic>nickel oxide</topic><topic>photocatalysis</topic><topic>photocatalysts</topic><topic>porosity</topic><topic>porous media</topic><topic>surface area</topic><topic>Thermal decomposition</topic><topic>thermal degradation</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><topic>X-ray diffraction</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Lalitha</creatorcontrib><creatorcontrib>Manoj, Devaraj</creatorcontrib><creatorcontrib>Rajendran, Saravanan</creatorcontrib><creatorcontrib>Gracia, F.</creatorcontrib><creatorcontrib>Jalil, A.A.</creatorcontrib><creatorcontrib>Chen, Wei-Hsin</creatorcontrib><creatorcontrib>Soto-Moscoso, Matias</creatorcontrib><creatorcontrib>Gracia-Pinilla, M.A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Lalitha</au><au>Manoj, Devaraj</au><au>Rajendran, Saravanan</au><au>Gracia, F.</au><au>Jalil, A.A.</au><au>Chen, Wei-Hsin</au><au>Soto-Moscoso, Matias</au><au>Gracia-Pinilla, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol</atitle><jtitle>Environmental research</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>236</volume><spage>116790</spage><epage>116790</epage><pages>116790-116790</pages><artnum>116790</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV–vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants. •The black NiO/Ni2O3 nanoflowers were synthesized by thermal decomposition method.•The synthesized black NiO/Ni2O3 has showed better visible light activity.•The NiO/Ni2O3 nanoflowers showed mesopores and enhanced surface area.•Visible light activity is enabled by the produced electron-hole separation mechanisms.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.envres.2023.116790</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3771-4694</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2023-11, Vol.236, p.116790-116790, Article 116790
issn 0013-9351
1096-0953
language eng
recordid cdi_proquest_miscellaneous_2887615573
source Elsevier ScienceDirect Journals
subjects 4-Chlorophenol
Black nickel oxide
chemical precipitation
hysteresis
industrial effluents
light
Mesopores
Nanoflowers
nickel oxide
photocatalysis
photocatalysts
porosity
porous media
surface area
Thermal decomposition
thermal degradation
transmission electron microscopy
ultraviolet-visible spectroscopy
X-ray diffraction
X-ray photoelectron spectroscopy
title Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20NiO/Ni2O3%20nanoflowers%20for%20favorable%20visible%20light%20photocatalytic%20degradation%20of%204-chlorophenol&rft.jtitle=Environmental%20research&rft.au=Gnanasekaran,%20Lalitha&rft.date=2023-11-01&rft.volume=236&rft.spage=116790&rft.epage=116790&rft.pages=116790-116790&rft.artnum=116790&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.116790&rft_dat=%3Cproquest_cross%3E2844087206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844087206&rft_id=info:pmid/&rft_els_id=S0013935123015943&rfr_iscdi=true