Climate predicts wildland fire extent across China

Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-10, Vol.896, p.164987-164987, Article 164987
Hauptverfasser: Shabbir, Ali Hassan, Ji, Jie, Groninger, John W., Gueye, Ghislain N., Knouft, Jason H., van Etten, Eddie J.B., Zhang, Jiquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164987
container_issue
container_start_page 164987
container_title The Science of the total environment
container_volume 896
creator Shabbir, Ali Hassan
Ji, Jie
Groninger, John W.
Gueye, Ghislain N.
Knouft, Jason H.
van Etten, Eddie J.B.
Zhang, Jiquan
description Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts. [Display omitted] •Wildfires have become more frequent and occur at greater extents globally.•Threshold-based wildfire models are needed for seasonal and multi-year planning.•Models addressing non-stationary and non-linear effects improve wildfire prediction.•Maximum temperature thresholds are critical to accurate wildfire prediction.•Changes in climate are expected to increase wildfire frequency and extent.
doi_str_mv 10.1016/j.scitotenv.2023.164987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887613009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723036100</els_id><sourcerecordid>2887613009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2b8f08a50799d68ef37ba1c69edff782b3488b473f02a20bab72eb226a5d98b43</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwC5AlmwQ_Uj-WVcRLqsQG1pYdT4SrNCl2WuDvcQl0C96MJZ-Z6zkIXRFcEEz4zaqItR_6AbpdQTFlBeGlkuIITYkUKieY8mM0xbiUueJKTNBZjCucjpDkFE2YYKpM9ymiVevXZoBsE8D5eojZu29dazqXNT5ABh8pY8hMHfoYs-rVd-YcnTSmjXDxU2fo5e72uXrIl0_3j9VimdclLoecWtlgaeZYKOW4hIYJa0jNFbimEZJaVkppS8EaTA3F1lhBwVLKzdyp9MBm6Hqcuwn92xbioNc-1tCmz0G_jZpKKThhGKt_oIzKkmLFEypG9HujAI3ehGQgfGqC9d6tXumDW713q0e3qfPyJ2Rr1-AOfb8yE7AYAUhWdh7CfhB0dRIboB606_2fIV8JHo4T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832842096</pqid></control><display><type>article</type><title>Climate predicts wildland fire extent across China</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shabbir, Ali Hassan ; Ji, Jie ; Groninger, John W. ; Gueye, Ghislain N. ; Knouft, Jason H. ; van Etten, Eddie J.B. ; Zhang, Jiquan</creator><creatorcontrib>Shabbir, Ali Hassan ; Ji, Jie ; Groninger, John W. ; Gueye, Ghislain N. ; Knouft, Jason H. ; van Etten, Eddie J.B. ; Zhang, Jiquan</creatorcontrib><description>Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts. [Display omitted] •Wildfires have become more frequent and occur at greater extents globally.•Threshold-based wildfire models are needed for seasonal and multi-year planning.•Models addressing non-stationary and non-linear effects improve wildfire prediction.•Maximum temperature thresholds are critical to accurate wildfire prediction.•Changes in climate are expected to increase wildfire frequency and extent.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.164987</identifier><identifier>PMID: 37394078</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>China ; climate ; Climate change ; Dynamic simulation ; Ecosystem model ; environment ; prediction ; temperature ; time series analysis ; vapor pressure deficit ; wildfires ; wildland ; Wildland area burned</subject><ispartof>The Science of the total environment, 2023-10, Vol.896, p.164987-164987, Article 164987</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2b8f08a50799d68ef37ba1c69edff782b3488b473f02a20bab72eb226a5d98b43</citedby><cites>FETCH-LOGICAL-c404t-2b8f08a50799d68ef37ba1c69edff782b3488b473f02a20bab72eb226a5d98b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969723036100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37394078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabbir, Ali Hassan</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Groninger, John W.</creatorcontrib><creatorcontrib>Gueye, Ghislain N.</creatorcontrib><creatorcontrib>Knouft, Jason H.</creatorcontrib><creatorcontrib>van Etten, Eddie J.B.</creatorcontrib><creatorcontrib>Zhang, Jiquan</creatorcontrib><title>Climate predicts wildland fire extent across China</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts. [Display omitted] •Wildfires have become more frequent and occur at greater extents globally.•Threshold-based wildfire models are needed for seasonal and multi-year planning.•Models addressing non-stationary and non-linear effects improve wildfire prediction.•Maximum temperature thresholds are critical to accurate wildfire prediction.•Changes in climate are expected to increase wildfire frequency and extent.</description><subject>China</subject><subject>climate</subject><subject>Climate change</subject><subject>Dynamic simulation</subject><subject>Ecosystem model</subject><subject>environment</subject><subject>prediction</subject><subject>temperature</subject><subject>time series analysis</subject><subject>vapor pressure deficit</subject><subject>wildfires</subject><subject>wildland</subject><subject>Wildland area burned</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwC5AlmwQ_Uj-WVcRLqsQG1pYdT4SrNCl2WuDvcQl0C96MJZ-Z6zkIXRFcEEz4zaqItR_6AbpdQTFlBeGlkuIITYkUKieY8mM0xbiUueJKTNBZjCucjpDkFE2YYKpM9ymiVevXZoBsE8D5eojZu29dazqXNT5ABh8pY8hMHfoYs-rVd-YcnTSmjXDxU2fo5e72uXrIl0_3j9VimdclLoecWtlgaeZYKOW4hIYJa0jNFbimEZJaVkppS8EaTA3F1lhBwVLKzdyp9MBm6Hqcuwn92xbioNc-1tCmz0G_jZpKKThhGKt_oIzKkmLFEypG9HujAI3ehGQgfGqC9d6tXumDW713q0e3qfPyJ2Rr1-AOfb8yE7AYAUhWdh7CfhB0dRIboB606_2fIV8JHo4T</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Shabbir, Ali Hassan</creator><creator>Ji, Jie</creator><creator>Groninger, John W.</creator><creator>Gueye, Ghislain N.</creator><creator>Knouft, Jason H.</creator><creator>van Etten, Eddie J.B.</creator><creator>Zhang, Jiquan</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231020</creationdate><title>Climate predicts wildland fire extent across China</title><author>Shabbir, Ali Hassan ; Ji, Jie ; Groninger, John W. ; Gueye, Ghislain N. ; Knouft, Jason H. ; van Etten, Eddie J.B. ; Zhang, Jiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2b8f08a50799d68ef37ba1c69edff782b3488b473f02a20bab72eb226a5d98b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>China</topic><topic>climate</topic><topic>Climate change</topic><topic>Dynamic simulation</topic><topic>Ecosystem model</topic><topic>environment</topic><topic>prediction</topic><topic>temperature</topic><topic>time series analysis</topic><topic>vapor pressure deficit</topic><topic>wildfires</topic><topic>wildland</topic><topic>Wildland area burned</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabbir, Ali Hassan</creatorcontrib><creatorcontrib>Ji, Jie</creatorcontrib><creatorcontrib>Groninger, John W.</creatorcontrib><creatorcontrib>Gueye, Ghislain N.</creatorcontrib><creatorcontrib>Knouft, Jason H.</creatorcontrib><creatorcontrib>van Etten, Eddie J.B.</creatorcontrib><creatorcontrib>Zhang, Jiquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabbir, Ali Hassan</au><au>Ji, Jie</au><au>Groninger, John W.</au><au>Gueye, Ghislain N.</au><au>Knouft, Jason H.</au><au>van Etten, Eddie J.B.</au><au>Zhang, Jiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate predicts wildland fire extent across China</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2023-10-20</date><risdate>2023</risdate><volume>896</volume><spage>164987</spage><epage>164987</epage><pages>164987-164987</pages><artnum>164987</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts. [Display omitted] •Wildfires have become more frequent and occur at greater extents globally.•Threshold-based wildfire models are needed for seasonal and multi-year planning.•Models addressing non-stationary and non-linear effects improve wildfire prediction.•Maximum temperature thresholds are critical to accurate wildfire prediction.•Changes in climate are expected to increase wildfire frequency and extent.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37394078</pmid><doi>10.1016/j.scitotenv.2023.164987</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2023-10, Vol.896, p.164987-164987, Article 164987
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2887613009
source Elsevier ScienceDirect Journals Complete
subjects China
climate
Climate change
Dynamic simulation
Ecosystem model
environment
prediction
temperature
time series analysis
vapor pressure deficit
wildfires
wildland
Wildland area burned
title Climate predicts wildland fire extent across China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20predicts%20wildland%20fire%20extent%20across%20China&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Shabbir,%20Ali%20Hassan&rft.date=2023-10-20&rft.volume=896&rft.spage=164987&rft.epage=164987&rft.pages=164987-164987&rft.artnum=164987&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.164987&rft_dat=%3Cproquest_cross%3E2887613009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832842096&rft_id=info:pmid/37394078&rft_els_id=S0048969723036100&rfr_iscdi=true