A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons

Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2006-03, Vol.114 (1), p.530-541
Hauptverfasser: Berdondini, L., Chiappalone, M., van der Wal, P.D., Imfeld, K., de Rooij, N.F., Koudelka-Hep, M., Tedesco, M., Martinoia, S., van Pelt, J., Le Masson, G., Garenne, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 1
container_start_page 530
container_title Sensors and actuators. B, Chemical
container_volume 114
creator Berdondini, L.
Chiappalone, M.
van der Wal, P.D.
Imfeld, K.
de Rooij, N.F.
Koudelka-Hep, M.
Tedesco, M.
Martinoia, S.
van Pelt, J.
Le Masson, G.
Garenne, A.
description Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode arrays (MEAs). Here, we describe a new strategy, based on MEAs, for studying in vitro neuronal network dynamics in interconnected sub-populations of cortical neurons. The rationale is to sub-divide the neuronal network into communicating clusters while preserving a high degree of functional connectivity within each confined sub-population, i.e. to achieve a compromise between a completely random large neuronal population and a patterned network, such as currently used with conventional MEAs. To this end, we have realized and functionally characterized a Pt microelectrode array with an integrated EPON SU-8 clustering structure, allowing to confine five relatively large yet interconnected spontaneously developing neuronal networks (i.e. thousands of cells). The clustering structure consists of five chambers of 3 mm in diameter interconnected via 800 μm long and 300 μm wide microchannels and is integrated on the MEA of 60 thin-film Pt electrodes of 30 μm diameter. Tests of the Pt microelectrodes’ stability under stimulation showed a stable behavior up to 35,000 voltage stimuli and the biocompatibility was assessed with the cultures of dissociated rat's cortical neurons achieving cultures’ viability up to 60 days in vitro. Compared to conventional MEAs, the monitoring of spontaneous and evoked activity and the computation of the Post-Stimulus Time Histogram (PSTH) within the clusters clearly demonstrates: (i) the capability to selectively activate (through poly-synaptic pathways) specific network regions and (ii) the confinement of the network dynamics mainly in the highly connected sub-networks.
doi_str_mv 10.1016/j.snb.2005.04.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28875442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400505004624</els_id><sourcerecordid>28875442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-606ad84c065f5a5d953dac563b8c4ec97619d2b9ab46e2b1a23e06c5931abbf03</originalsourceid><addsrcrecordid>eNqFkc9q3DAQxkVpodttHiA3nUpy8Fay_tgmpyWkTSCll_YsZHm81eKVNpK8YR-nb9ox23MLA2I03_yG-YaQa842nHH9eb_Jod_UjKkNkxj1G7LibSMqwZrmLVmxrlaVxPJ78iHnPWNMCs1W5PeWHrxLESZwJcUBqE3JnunNt4ftLfWhwC7ZAgN99eUXddOcCyQfdjSXNLsyJ8h0jAmVJ8jF72xZij7Qk0ccDTAj9BwsDsnLt4th9AF5CzphFnAupnnuq2M8zhMCYsg0jpfekD-Sd6OdMlz9fdfk55eHH_eP1fP3r0_32-fKCdWVSjNth1Y6ptWorBo6JQbrlBZ96yS4rtG8G-q-s73UUPfc1gKYdqoT3Pb9yMSafLpwjym-zLiMOfjsYJpsgDhnU7dto6Ss_yvkDVrOlUAhvwjR35wTjOaY_MGms-HMLFcze4NXM8vVDJMYC_zu0gO46slDMtl5CA4Gn9ApM0T_j-4_Ywak7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17077153</pqid></control><display><type>article</type><title>A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Berdondini, L. ; Chiappalone, M. ; van der Wal, P.D. ; Imfeld, K. ; de Rooij, N.F. ; Koudelka-Hep, M. ; Tedesco, M. ; Martinoia, S. ; van Pelt, J. ; Le Masson, G. ; Garenne, A.</creator><creatorcontrib>Berdondini, L. ; Chiappalone, M. ; van der Wal, P.D. ; Imfeld, K. ; de Rooij, N.F. ; Koudelka-Hep, M. ; Tedesco, M. ; Martinoia, S. ; van Pelt, J. ; Le Masson, G. ; Garenne, A.</creatorcontrib><description>Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode arrays (MEAs). Here, we describe a new strategy, based on MEAs, for studying in vitro neuronal network dynamics in interconnected sub-populations of cortical neurons. The rationale is to sub-divide the neuronal network into communicating clusters while preserving a high degree of functional connectivity within each confined sub-population, i.e. to achieve a compromise between a completely random large neuronal population and a patterned network, such as currently used with conventional MEAs. To this end, we have realized and functionally characterized a Pt microelectrode array with an integrated EPON SU-8 clustering structure, allowing to confine five relatively large yet interconnected spontaneously developing neuronal networks (i.e. thousands of cells). The clustering structure consists of five chambers of 3 mm in diameter interconnected via 800 μm long and 300 μm wide microchannels and is integrated on the MEA of 60 thin-film Pt electrodes of 30 μm diameter. Tests of the Pt microelectrodes’ stability under stimulation showed a stable behavior up to 35,000 voltage stimuli and the biocompatibility was assessed with the cultures of dissociated rat's cortical neurons achieving cultures’ viability up to 60 days in vitro. Compared to conventional MEAs, the monitoring of spontaneous and evoked activity and the computation of the Post-Stimulus Time Histogram (PSTH) within the clusters clearly demonstrates: (i) the capability to selectively activate (through poly-synaptic pathways) specific network regions and (ii) the confinement of the network dynamics mainly in the highly connected sub-networks.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2005.04.042</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bio-MEMs ; Clusters ; In vitro neuronal networks ; Long-term stimulation ; Microelectrode array ; Neurodynamics ; Plasticity ; SU-8 adhesion</subject><ispartof>Sensors and actuators. B, Chemical, 2006-03, Vol.114 (1), p.530-541</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-606ad84c065f5a5d953dac563b8c4ec97619d2b9ab46e2b1a23e06c5931abbf03</citedby><cites>FETCH-LOGICAL-c359t-606ad84c065f5a5d953dac563b8c4ec97619d2b9ab46e2b1a23e06c5931abbf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2005.04.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berdondini, L.</creatorcontrib><creatorcontrib>Chiappalone, M.</creatorcontrib><creatorcontrib>van der Wal, P.D.</creatorcontrib><creatorcontrib>Imfeld, K.</creatorcontrib><creatorcontrib>de Rooij, N.F.</creatorcontrib><creatorcontrib>Koudelka-Hep, M.</creatorcontrib><creatorcontrib>Tedesco, M.</creatorcontrib><creatorcontrib>Martinoia, S.</creatorcontrib><creatorcontrib>van Pelt, J.</creatorcontrib><creatorcontrib>Le Masson, G.</creatorcontrib><creatorcontrib>Garenne, A.</creatorcontrib><title>A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons</title><title>Sensors and actuators. B, Chemical</title><description>Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode arrays (MEAs). Here, we describe a new strategy, based on MEAs, for studying in vitro neuronal network dynamics in interconnected sub-populations of cortical neurons. The rationale is to sub-divide the neuronal network into communicating clusters while preserving a high degree of functional connectivity within each confined sub-population, i.e. to achieve a compromise between a completely random large neuronal population and a patterned network, such as currently used with conventional MEAs. To this end, we have realized and functionally characterized a Pt microelectrode array with an integrated EPON SU-8 clustering structure, allowing to confine five relatively large yet interconnected spontaneously developing neuronal networks (i.e. thousands of cells). The clustering structure consists of five chambers of 3 mm in diameter interconnected via 800 μm long and 300 μm wide microchannels and is integrated on the MEA of 60 thin-film Pt electrodes of 30 μm diameter. Tests of the Pt microelectrodes’ stability under stimulation showed a stable behavior up to 35,000 voltage stimuli and the biocompatibility was assessed with the cultures of dissociated rat's cortical neurons achieving cultures’ viability up to 60 days in vitro. Compared to conventional MEAs, the monitoring of spontaneous and evoked activity and the computation of the Post-Stimulus Time Histogram (PSTH) within the clusters clearly demonstrates: (i) the capability to selectively activate (through poly-synaptic pathways) specific network regions and (ii) the confinement of the network dynamics mainly in the highly connected sub-networks.</description><subject>Bio-MEMs</subject><subject>Clusters</subject><subject>In vitro neuronal networks</subject><subject>Long-term stimulation</subject><subject>Microelectrode array</subject><subject>Neurodynamics</subject><subject>Plasticity</subject><subject>SU-8 adhesion</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc9q3DAQxkVpodttHiA3nUpy8Fay_tgmpyWkTSCll_YsZHm81eKVNpK8YR-nb9ox23MLA2I03_yG-YaQa842nHH9eb_Jod_UjKkNkxj1G7LibSMqwZrmLVmxrlaVxPJ78iHnPWNMCs1W5PeWHrxLESZwJcUBqE3JnunNt4ftLfWhwC7ZAgN99eUXddOcCyQfdjSXNLsyJ8h0jAmVJ8jF72xZij7Qk0ccDTAj9BwsDsnLt4th9AF5CzphFnAupnnuq2M8zhMCYsg0jpfekD-Sd6OdMlz9fdfk55eHH_eP1fP3r0_32-fKCdWVSjNth1Y6ptWorBo6JQbrlBZ96yS4rtG8G-q-s73UUPfc1gKYdqoT3Pb9yMSafLpwjym-zLiMOfjsYJpsgDhnU7dto6Ss_yvkDVrOlUAhvwjR35wTjOaY_MGms-HMLFcze4NXM8vVDJMYC_zu0gO46slDMtl5CA4Gn9ApM0T_j-4_Ywak7Q</recordid><startdate>20060330</startdate><enddate>20060330</enddate><creator>Berdondini, L.</creator><creator>Chiappalone, M.</creator><creator>van der Wal, P.D.</creator><creator>Imfeld, K.</creator><creator>de Rooij, N.F.</creator><creator>Koudelka-Hep, M.</creator><creator>Tedesco, M.</creator><creator>Martinoia, S.</creator><creator>van Pelt, J.</creator><creator>Le Masson, G.</creator><creator>Garenne, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20060330</creationdate><title>A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons</title><author>Berdondini, L. ; Chiappalone, M. ; van der Wal, P.D. ; Imfeld, K. ; de Rooij, N.F. ; Koudelka-Hep, M. ; Tedesco, M. ; Martinoia, S. ; van Pelt, J. ; Le Masson, G. ; Garenne, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-606ad84c065f5a5d953dac563b8c4ec97619d2b9ab46e2b1a23e06c5931abbf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bio-MEMs</topic><topic>Clusters</topic><topic>In vitro neuronal networks</topic><topic>Long-term stimulation</topic><topic>Microelectrode array</topic><topic>Neurodynamics</topic><topic>Plasticity</topic><topic>SU-8 adhesion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdondini, L.</creatorcontrib><creatorcontrib>Chiappalone, M.</creatorcontrib><creatorcontrib>van der Wal, P.D.</creatorcontrib><creatorcontrib>Imfeld, K.</creatorcontrib><creatorcontrib>de Rooij, N.F.</creatorcontrib><creatorcontrib>Koudelka-Hep, M.</creatorcontrib><creatorcontrib>Tedesco, M.</creatorcontrib><creatorcontrib>Martinoia, S.</creatorcontrib><creatorcontrib>van Pelt, J.</creatorcontrib><creatorcontrib>Le Masson, G.</creatorcontrib><creatorcontrib>Garenne, A.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdondini, L.</au><au>Chiappalone, M.</au><au>van der Wal, P.D.</au><au>Imfeld, K.</au><au>de Rooij, N.F.</au><au>Koudelka-Hep, M.</au><au>Tedesco, M.</au><au>Martinoia, S.</au><au>van Pelt, J.</au><au>Le Masson, G.</au><au>Garenne, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2006-03-30</date><risdate>2006</risdate><volume>114</volume><issue>1</issue><spage>530</spage><epage>541</epage><pages>530-541</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode arrays (MEAs). Here, we describe a new strategy, based on MEAs, for studying in vitro neuronal network dynamics in interconnected sub-populations of cortical neurons. The rationale is to sub-divide the neuronal network into communicating clusters while preserving a high degree of functional connectivity within each confined sub-population, i.e. to achieve a compromise between a completely random large neuronal population and a patterned network, such as currently used with conventional MEAs. To this end, we have realized and functionally characterized a Pt microelectrode array with an integrated EPON SU-8 clustering structure, allowing to confine five relatively large yet interconnected spontaneously developing neuronal networks (i.e. thousands of cells). The clustering structure consists of five chambers of 3 mm in diameter interconnected via 800 μm long and 300 μm wide microchannels and is integrated on the MEA of 60 thin-film Pt electrodes of 30 μm diameter. Tests of the Pt microelectrodes’ stability under stimulation showed a stable behavior up to 35,000 voltage stimuli and the biocompatibility was assessed with the cultures of dissociated rat's cortical neurons achieving cultures’ viability up to 60 days in vitro. Compared to conventional MEAs, the monitoring of spontaneous and evoked activity and the computation of the Post-Stimulus Time Histogram (PSTH) within the clusters clearly demonstrates: (i) the capability to selectively activate (through poly-synaptic pathways) specific network regions and (ii) the confinement of the network dynamics mainly in the highly connected sub-networks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2005.04.042</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2006-03, Vol.114 (1), p.530-541
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_28875442
source ScienceDirect Journals (5 years ago - present)
subjects Bio-MEMs
Clusters
In vitro neuronal networks
Long-term stimulation
Microelectrode array
Neurodynamics
Plasticity
SU-8 adhesion
title A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microelectrode%20array%20(MEA)%20integrated%20with%20clustering%20structures%20for%20investigating%20in%20vitro%20neurodynamics%20in%20confined%20interconnected%20sub-populations%20of%20neurons&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Berdondini,%20L.&rft.date=2006-03-30&rft.volume=114&rft.issue=1&rft.spage=530&rft.epage=541&rft.pages=530-541&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2005.04.042&rft_dat=%3Cproquest_cross%3E28875442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17077153&rft_id=info:pmid/&rft_els_id=S0925400505004624&rfr_iscdi=true