Distributed Sensitivity Analysis of Flood Inundation Model Calibration

Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2005-02, Vol.131 (2), p.117-126
Hauptverfasser: Hall, J. W, Tarantola, S, Bates, P. D, Horritt, M. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 2
container_start_page 117
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 131
creator Hall, J. W
Tarantola, S
Bates, P. D
Horritt, M. S
description Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.
doi_str_mv 10.1061/(ASCE)0733-9429(2005)131:2(117)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28875061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28875061</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</originalsourceid><addsrcrecordid>eNqNkU1LxDAURYMoOI7-h27UmUU1Lx9N40IYRkcFxYW6DmmTQqQ2mrTC_HtTR3Snrh48DvfCPQgdAz4BXMDpbPGwvJxjQWkuGZEzgjGfA4UzMgMQ8y00AcloLiTG22jyze2ivRifMQZWyHKCVhcu9sFVQ29N9mC76Hr37vp1tuh0u44uZr7JVq33Jrvphs7o3vkuu_PGttlSt64Kn599tNPoNtqDrztFT6vLx-V1fnt_dbNc3OaaY9bnLPXWllMO3BoDghWilGUpoOYVrnDRlKyyQlTcUNIIDiWhhQECQkrSlNrQKTra5L4G_zbY2KsXF2vbtrqzfoiKpDCe1vkHyLEsC_knmEYEyhhN4PkGrIOPMdhGvQb3osNaAVajEaVGI2pcWo1Lq9GISkYUUclICjj8atKx1m0TdFe7-JNSMC6BksSdbbiEWfXsh5BUxO-W30s-ALx_nCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413443</pqid></control><display><type>article</type><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</creator><creatorcontrib>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</creatorcontrib><description>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(2005)131:2(117)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Hydraulic constructions ; River flow control. Flood control ; Structural analysis. Stresses ; TECHNICAL PAPERS</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2005-02, Vol.131 (2), p.117-126</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</citedby><cites>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(2005)131:2(117)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(2005)131:2(117)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16459132$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, J. W</creatorcontrib><creatorcontrib>Tarantola, S</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><creatorcontrib>Horritt, M. S</creatorcontrib><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>River flow control. Flood control</subject><subject>Structural analysis. Stresses</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAURYMoOI7-h27UmUU1Lx9N40IYRkcFxYW6DmmTQqQ2mrTC_HtTR3Snrh48DvfCPQgdAz4BXMDpbPGwvJxjQWkuGZEzgjGfA4UzMgMQ8y00AcloLiTG22jyze2ivRifMQZWyHKCVhcu9sFVQ29N9mC76Hr37vp1tuh0u44uZr7JVq33Jrvphs7o3vkuu_PGttlSt64Kn599tNPoNtqDrztFT6vLx-V1fnt_dbNc3OaaY9bnLPXWllMO3BoDghWilGUpoOYVrnDRlKyyQlTcUNIIDiWhhQECQkrSlNrQKTra5L4G_zbY2KsXF2vbtrqzfoiKpDCe1vkHyLEsC_knmEYEyhhN4PkGrIOPMdhGvQb3osNaAVajEaVGI2pcWo1Lq9GISkYUUclICjj8atKx1m0TdFe7-JNSMC6BksSdbbiEWfXsh5BUxO-W30s-ALx_nCY</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Hall, J. W</creator><creator>Tarantola, S</creator><creator>Bates, P. D</creator><creator>Horritt, M. S</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050201</creationdate><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><author>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>River flow control. Flood control</topic><topic>Structural analysis. Stresses</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, J. W</creatorcontrib><creatorcontrib>Tarantola, S</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><creatorcontrib>Horritt, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, J. W</au><au>Tarantola, S</au><au>Bates, P. D</au><au>Horritt, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>131</volume><issue>2</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(2005)131:2(117)</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2005-02, Vol.131 (2), p.117-126
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_28875061
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Hydraulic constructions
River flow control. Flood control
Structural analysis. Stresses
TECHNICAL PAPERS
title Distributed Sensitivity Analysis of Flood Inundation Model Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Sensitivity%20Analysis%20of%20Flood%20Inundation%20Model%20Calibration&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Hall,%20J.%20W&rft.date=2005-02-01&rft.volume=131&rft.issue=2&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(2005)131:2(117)&rft_dat=%3Cproquest_cross%3E28875061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413443&rft_id=info:pmid/&rfr_iscdi=true