Distributed Sensitivity Analysis of Flood Inundation Model Calibration
Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2005-02, Vol.131 (2), p.117-126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 2 |
container_start_page | 117 |
container_title | Journal of hydraulic engineering (New York, N.Y.) |
container_volume | 131 |
creator | Hall, J. W Tarantola, S Bates, P. D Horritt, M. S |
description | Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted. |
doi_str_mv | 10.1061/(ASCE)0733-9429(2005)131:2(117) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28875061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28875061</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</originalsourceid><addsrcrecordid>eNqNkU1LxDAURYMoOI7-h27UmUU1Lx9N40IYRkcFxYW6DmmTQqQ2mrTC_HtTR3Snrh48DvfCPQgdAz4BXMDpbPGwvJxjQWkuGZEzgjGfA4UzMgMQ8y00AcloLiTG22jyze2ivRifMQZWyHKCVhcu9sFVQ29N9mC76Hr37vp1tuh0u44uZr7JVq33Jrvphs7o3vkuu_PGttlSt64Kn599tNPoNtqDrztFT6vLx-V1fnt_dbNc3OaaY9bnLPXWllMO3BoDghWilGUpoOYVrnDRlKyyQlTcUNIIDiWhhQECQkrSlNrQKTra5L4G_zbY2KsXF2vbtrqzfoiKpDCe1vkHyLEsC_knmEYEyhhN4PkGrIOPMdhGvQb3osNaAVajEaVGI2pcWo1Lq9GISkYUUclICjj8atKx1m0TdFe7-JNSMC6BksSdbbiEWfXsh5BUxO-W30s-ALx_nCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413443</pqid></control><display><type>article</type><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</creator><creatorcontrib>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</creatorcontrib><description>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(2005)131:2(117)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Hydraulic constructions ; River flow control. Flood control ; Structural analysis. Stresses ; TECHNICAL PAPERS</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2005-02, Vol.131 (2), p.117-126</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</citedby><cites>FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(2005)131:2(117)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(2005)131:2(117)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16459132$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, J. W</creatorcontrib><creatorcontrib>Tarantola, S</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><creatorcontrib>Horritt, M. S</creatorcontrib><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>River flow control. Flood control</subject><subject>Structural analysis. Stresses</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAURYMoOI7-h27UmUU1Lx9N40IYRkcFxYW6DmmTQqQ2mrTC_HtTR3Snrh48DvfCPQgdAz4BXMDpbPGwvJxjQWkuGZEzgjGfA4UzMgMQ8y00AcloLiTG22jyze2ivRifMQZWyHKCVhcu9sFVQ29N9mC76Hr37vp1tuh0u44uZr7JVq33Jrvphs7o3vkuu_PGttlSt64Kn599tNPoNtqDrztFT6vLx-V1fnt_dbNc3OaaY9bnLPXWllMO3BoDghWilGUpoOYVrnDRlKyyQlTcUNIIDiWhhQECQkrSlNrQKTra5L4G_zbY2KsXF2vbtrqzfoiKpDCe1vkHyLEsC_knmEYEyhhN4PkGrIOPMdhGvQb3osNaAVajEaVGI2pcWo1Lq9GISkYUUclICjj8atKx1m0TdFe7-JNSMC6BksSdbbiEWfXsh5BUxO-W30s-ALx_nCY</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Hall, J. W</creator><creator>Tarantola, S</creator><creator>Bates, P. D</creator><creator>Horritt, M. S</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050201</creationdate><title>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</title><author>Hall, J. W ; Tarantola, S ; Bates, P. D ; Horritt, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-4001ce53515edd17467898871c5b0b06f84be77b5d32f7518236d1217992f8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>River flow control. Flood control</topic><topic>Structural analysis. Stresses</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, J. W</creatorcontrib><creatorcontrib>Tarantola, S</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><creatorcontrib>Horritt, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, J. W</au><au>Tarantola, S</au><au>Bates, P. D</au><au>Horritt, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Sensitivity Analysis of Flood Inundation Model Calibration</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>131</volume><issue>2</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(2005)131:2(117)</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9429 |
ispartof | Journal of hydraulic engineering (New York, N.Y.), 2005-02, Vol.131 (2), p.117-126 |
issn | 0733-9429 1943-7900 |
language | eng |
recordid | cdi_proquest_miscellaneous_28875061 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Applied sciences Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology Hydraulic constructions River flow control. Flood control Structural analysis. Stresses TECHNICAL PAPERS |
title | Distributed Sensitivity Analysis of Flood Inundation Model Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Sensitivity%20Analysis%20of%20Flood%20Inundation%20Model%20Calibration&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Hall,%20J.%20W&rft.date=2005-02-01&rft.volume=131&rft.issue=2&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(2005)131:2(117)&rft_dat=%3Cproquest_cross%3E28875061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413443&rft_id=info:pmid/&rfr_iscdi=true |