Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications

Desert dust deposition to the ocean may be a significant source of biogeochemically important elements, specifically iron. The bioavailability of iron in the oceans requires it to be in a soluble form, and because atmospheric iron in desert dust is typically insoluble, understanding the atmospheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2004-09, Vol.109 (D17), p.D17205.1-n/a
Hauptverfasser: Hand, J. L., Mahowald, N. M., Chen, Y., Siefert, R. L., Luo, C., Subramaniam, A., Fung, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D17
container_start_page D17205.1
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 109
creator Hand, J. L.
Mahowald, N. M.
Chen, Y.
Siefert, R. L.
Luo, C.
Subramaniam, A.
Fung, I.
description Desert dust deposition to the ocean may be a significant source of biogeochemically important elements, specifically iron. The bioavailability of iron in the oceans requires it to be in a soluble form, and because atmospheric iron in desert dust is typically insoluble, understanding the atmospheric processes that convert insoluble iron to more soluble forms is essential. Understanding these relationships is especially important in remote ocean regions where iron may be the limiting nutrient. Observations of soluble iron from 2001 cruise‐based aerosol measurements over the Atlantic and Pacific Oceans ranged from 0 to 45% (mean of 4 ± 9%) in the fine mode (
doi_str_mv 10.1029/2004JD004574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28873507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28402698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5421-b77fdcfb1bced3289eefd988873696aebddf585d92086ab296e7d5ba5adb8dd63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEqPSHQ_gDawI2E78x45OS2AoICEQS8s_N63Biad2BuiSN8fDVMAK2Pha8vcdyec2zX2CHxNM1ROKcb85rQcT_a1mRQnjLaWY3m5WmPSyxZSKu81xKZ8w3lO8x2TVfD8rS5jMAgWlEZllSmV7CTm4dpuTg1LAo5LizkZAIacZjTlNKNkC-YtZQpoLMrNHBl3EZE1EU5gh12kgp-qhKXmIT9FJSBeQ3CVMwdXXMG1jvfz07zV3RhMLHN_Mo-bD87P36xft-dvh5frZeetYT0lrhRi9Gy2xDnxHpQIYvZJSio4rbsB6PzLJvKJYcmOp4iA8s4YZb6X3vDtqHh5y68eudlAWPYXiIEYzQ9oVTfdRDIv_AHtMuZL_BIngmHdkDz46gK6WUjKMeptr6flaE6z3y9N_Lq_iD25yTaltjdnMLpTfDieq6xWtXHfgvoYI13_N1Jvh3SkhVJJqtQcrlAW-_bJM_qy56ATTH98MevN6LU_Eq0EP3Q_psroj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17606318</pqid></control><display><type>article</type><title>Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Hand, J. L. ; Mahowald, N. M. ; Chen, Y. ; Siefert, R. L. ; Luo, C. ; Subramaniam, A. ; Fung, I.</creator><creatorcontrib>Hand, J. L. ; Mahowald, N. M. ; Chen, Y. ; Siefert, R. L. ; Luo, C. ; Subramaniam, A. ; Fung, I.</creatorcontrib><description>Desert dust deposition to the ocean may be a significant source of biogeochemically important elements, specifically iron. The bioavailability of iron in the oceans requires it to be in a soluble form, and because atmospheric iron in desert dust is typically insoluble, understanding the atmospheric processes that convert insoluble iron to more soluble forms is essential. Understanding these relationships is especially important in remote ocean regions where iron may be the limiting nutrient. Observations of soluble iron from 2001 cruise‐based aerosol measurements over the Atlantic and Pacific Oceans ranged from 0 to 45% (mean of 4 ± 9%) in the fine mode (&lt;2.5 μm in diameter) and 0 to 87% (mean of 2 ± 10%) in the coarse mode. We test two simple hypotheses of soluble iron enhancement in the atmosphere using a global model of mineral aerosols. The first method assumes that iron solubility increases as iron is exposed to solar radiation, approximating photoreduction reactions that are important pathways for enhancement of soluble iron in the presence of acidic solutions. The second process imitates cloud processing of iron by increasing the amount of soluble iron when the mineral aerosol comes into contact with a cloud. Both methods resulted in similar average magnitudes of percent soluble iron compared to observations but did not capture specific events or have sufficient variability, perhaps because the model does not include aerosol interactions between species other than mineral dust or other processes that may be important.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2004JD004574</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>desert dust ; Earth, ocean, space ; Exact sciences and technology ; Marine ; mineral aerosols ; soluble iron</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2004-09, Vol.109 (D17), p.D17205.1-n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5421-b77fdcfb1bced3289eefd988873696aebddf585d92086ab296e7d5ba5adb8dd63</citedby><cites>FETCH-LOGICAL-c5421-b77fdcfb1bced3289eefd988873696aebddf585d92086ab296e7d5ba5adb8dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004JD004574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004JD004574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11503,27913,27914,45563,45564,46398,46457,46822,46881</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16193492$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hand, J. L.</creatorcontrib><creatorcontrib>Mahowald, N. M.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Siefert, R. L.</creatorcontrib><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Subramaniam, A.</creatorcontrib><creatorcontrib>Fung, I.</creatorcontrib><title>Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Desert dust deposition to the ocean may be a significant source of biogeochemically important elements, specifically iron. The bioavailability of iron in the oceans requires it to be in a soluble form, and because atmospheric iron in desert dust is typically insoluble, understanding the atmospheric processes that convert insoluble iron to more soluble forms is essential. Understanding these relationships is especially important in remote ocean regions where iron may be the limiting nutrient. Observations of soluble iron from 2001 cruise‐based aerosol measurements over the Atlantic and Pacific Oceans ranged from 0 to 45% (mean of 4 ± 9%) in the fine mode (&lt;2.5 μm in diameter) and 0 to 87% (mean of 2 ± 10%) in the coarse mode. We test two simple hypotheses of soluble iron enhancement in the atmosphere using a global model of mineral aerosols. The first method assumes that iron solubility increases as iron is exposed to solar radiation, approximating photoreduction reactions that are important pathways for enhancement of soluble iron in the presence of acidic solutions. The second process imitates cloud processing of iron by increasing the amount of soluble iron when the mineral aerosol comes into contact with a cloud. Both methods resulted in similar average magnitudes of percent soluble iron compared to observations but did not capture specific events or have sufficient variability, perhaps because the model does not include aerosol interactions between species other than mineral dust or other processes that may be important.</description><subject>desert dust</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>mineral aerosols</subject><subject>soluble iron</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEqPSHQ_gDawI2E78x45OS2AoICEQS8s_N63Biad2BuiSN8fDVMAK2Pha8vcdyec2zX2CHxNM1ROKcb85rQcT_a1mRQnjLaWY3m5WmPSyxZSKu81xKZ8w3lO8x2TVfD8rS5jMAgWlEZllSmV7CTm4dpuTg1LAo5LizkZAIacZjTlNKNkC-YtZQpoLMrNHBl3EZE1EU5gh12kgp-qhKXmIT9FJSBeQ3CVMwdXXMG1jvfz07zV3RhMLHN_Mo-bD87P36xft-dvh5frZeetYT0lrhRi9Gy2xDnxHpQIYvZJSio4rbsB6PzLJvKJYcmOp4iA8s4YZb6X3vDtqHh5y68eudlAWPYXiIEYzQ9oVTfdRDIv_AHtMuZL_BIngmHdkDz46gK6WUjKMeptr6flaE6z3y9N_Lq_iD25yTaltjdnMLpTfDieq6xWtXHfgvoYI13_N1Jvh3SkhVJJqtQcrlAW-_bJM_qy56ATTH98MevN6LU_Eq0EP3Q_psroj</recordid><startdate>20040916</startdate><enddate>20040916</enddate><creator>Hand, J. L.</creator><creator>Mahowald, N. M.</creator><creator>Chen, Y.</creator><creator>Siefert, R. L.</creator><creator>Luo, C.</creator><creator>Subramaniam, A.</creator><creator>Fung, I.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040916</creationdate><title>Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications</title><author>Hand, J. L. ; Mahowald, N. M. ; Chen, Y. ; Siefert, R. L. ; Luo, C. ; Subramaniam, A. ; Fung, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5421-b77fdcfb1bced3289eefd988873696aebddf585d92086ab296e7d5ba5adb8dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>desert dust</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>mineral aerosols</topic><topic>soluble iron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, J. L.</creatorcontrib><creatorcontrib>Mahowald, N. M.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Siefert, R. L.</creatorcontrib><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Subramaniam, A.</creatorcontrib><creatorcontrib>Fung, I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, J. L.</au><au>Mahowald, N. M.</au><au>Chen, Y.</au><au>Siefert, R. L.</au><au>Luo, C.</au><au>Subramaniam, A.</au><au>Fung, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2004-09-16</date><risdate>2004</risdate><volume>109</volume><issue>D17</issue><spage>D17205.1</spage><epage>n/a</epage><pages>D17205.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Desert dust deposition to the ocean may be a significant source of biogeochemically important elements, specifically iron. The bioavailability of iron in the oceans requires it to be in a soluble form, and because atmospheric iron in desert dust is typically insoluble, understanding the atmospheric processes that convert insoluble iron to more soluble forms is essential. Understanding these relationships is especially important in remote ocean regions where iron may be the limiting nutrient. Observations of soluble iron from 2001 cruise‐based aerosol measurements over the Atlantic and Pacific Oceans ranged from 0 to 45% (mean of 4 ± 9%) in the fine mode (&lt;2.5 μm in diameter) and 0 to 87% (mean of 2 ± 10%) in the coarse mode. We test two simple hypotheses of soluble iron enhancement in the atmosphere using a global model of mineral aerosols. The first method assumes that iron solubility increases as iron is exposed to solar radiation, approximating photoreduction reactions that are important pathways for enhancement of soluble iron in the presence of acidic solutions. The second process imitates cloud processing of iron by increasing the amount of soluble iron when the mineral aerosol comes into contact with a cloud. Both methods resulted in similar average magnitudes of percent soluble iron compared to observations but did not capture specific events or have sufficient variability, perhaps because the model does not include aerosol interactions between species other than mineral dust or other processes that may be important.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004JD004574</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2004-09, Vol.109 (D17), p.D17205.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28873507
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects desert dust
Earth, ocean, space
Exact sciences and technology
Marine
mineral aerosols
soluble iron
title Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20atmospheric-processed%20soluble%20iron%20from%20observations%20and%20a%20global%20mineral%20aerosol%20model:%20Biogeochemical%20implications&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Hand,%20J.%20L.&rft.date=2004-09-16&rft.volume=109&rft.issue=D17&rft.spage=D17205.1&rft.epage=n/a&rft.pages=D17205.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2004JD004574&rft_dat=%3Cproquest_cross%3E28402698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17606318&rft_id=info:pmid/&rfr_iscdi=true