Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review

The high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to interm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical record 2024-01, Vol.24 (1), p.e202300247-n/a
Hauptverfasser: Samreen, Ayesha, Ali, Muhammad Sudais, Huzaifa, Muhammad, Ali, Nasir, Hassan, Bilal, Ullah, Fazl, Ali, Shahid, Arifin, Nor Anisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e202300247
container_title Chemical record
container_volume 24
creator Samreen, Ayesha
Ali, Muhammad Sudais
Huzaifa, Muhammad
Ali, Nasir
Hassan, Bilal
Ullah, Fazl
Ali, Shahid
Arifin, Nor Anisa
description The high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C
doi_str_mv 10.1002/tcr.202300247
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886942301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913279239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3697-ca2cd573bb395c326c9eae546a83232868ba19ffe165cf43b442102a254ca4e3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2Kqry6ZIsssekm1K_EcXdDVGglEIjO3nKcGzBN4sFOZmDHT-A38kvqdnhILLq6R7rfPbo6B6E9Sg4pIezraMMhI4wnLeQHtEVzVmakUHTjn5ZZqZTaRNsx3hBCqZDyE9rkUnGuJN9CV7NmaQYLPQxjxG7AFxD8Mv52Izw9PB6ZCA2uzHjtG8BnZoTgTBdx6wP-5TvX4PM7lzbHE3S4gq6L3_AMV75fBLiGIbol4EtYOljtoo9tuoTPz3MHzY-_z6sf2en5yc9qdppZXiiZWcNsk0te11zllrPCKjCQi8KUnHFWFmVtqGpboEVuW8FrIRglzLBcWCOA76Ava9tF8LcTxFH3Ltr0mBnAT1GzsiyUSGnRhB68Q2_8FIb0nGaKciYV4ypR2ZqywccYoNWL4HoT7jUl-m8BOhWgXwtI_P6z61T30LzSL4knQK6Blevg_v9uel5dvln_AVxgkVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913279239</pqid></control><display><type>article</type><title>Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review</title><source>Access via Wiley Online Library</source><creator>Samreen, Ayesha ; Ali, Muhammad Sudais ; Huzaifa, Muhammad ; Ali, Nasir ; Hassan, Bilal ; Ullah, Fazl ; Ali, Shahid ; Arifin, Nor Anisa</creator><creatorcontrib>Samreen, Ayesha ; Ali, Muhammad Sudais ; Huzaifa, Muhammad ; Ali, Nasir ; Hassan, Bilal ; Ullah, Fazl ; Ali, Shahid ; Arifin, Nor Anisa</creatorcontrib><description>The high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (&gt;800 °C) to intermediate/low operating temperature (400 °C&lt;T&lt;800 °C) in SOFCs in order to extend their life span, thermal compatibility, cost‐effectiveness, and ease of fabrication. However, the major challenges in developing cathode materials for low/intermediate temperature SOFCs include structural stability, catalytic activity for oxygen adsorption and reduction, and tolerance against contaminants such as chromium, boron, and sulfur. This research aims to provide an updated review of the perovskite‐based state‐of‐the‐art cathode materials LaSrMnO3 (LSM) and LaSrCOFeO3 (LSCF), as well as the recent trending Ruddlesden‐Popper phase (RP) and double perovskite‐structured materials SOFCs technology. Our review highlights various strategies such as surface modification, codoping, infiltration/impregnation, and composites with fluorite phases to address the challenges related to LSM/LSCF‐based electrode materials and improve their electrocatalytic activity. Moreover, this study also offers insight into the electrochemical performance of the double perovskite oxides and Ruddlesden‐Popper phase materials as cathodes for SOFCs. This review offers insight into perovskite‐based SOFC cathodes′ transition to low‐temp operation, addressing their stability, catalytic property, ongoing challenges, and future prospects.</description><identifier>ISSN: 1527-8999</identifier><identifier>EISSN: 1528-0691</identifier><identifier>DOI: 10.1002/tcr.202300247</identifier><identifier>PMID: 37933973</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Boron ; Catalytic activity ; Cathodes ; Chromium ; Clean energy ; Contaminants ; double perovskite ; Electric power generation ; electrochemical activity ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrons ; Fabrication ; Fluorite ; Fuel cells ; Fuel technology ; High temperature ; Life span ; Low temperature ; Operating temperature ; Perovskites ; polarization resistance ; Power plants ; Reviews ; Ruddlesden-Popper phase ; Solid oxide fuel cell ; Solid oxide fuel cells ; Structural stability ; Sulfur ; thermal expansion coefficient ; Thermal power ; Thermal power plants</subject><ispartof>Chemical record, 2024-01, Vol.24 (1), p.e202300247-n/a</ispartof><rights>2023 The Chemical Society of Japan &amp; Wiley‐VCH GmbH</rights><rights>2023 The Chemical Society of Japan &amp; Wiley-VCH GmbH.</rights><rights>2024 The Chemical Society of Japan &amp; Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3697-ca2cd573bb395c326c9eae546a83232868ba19ffe165cf43b442102a254ca4e3</citedby><cites>FETCH-LOGICAL-c3697-ca2cd573bb395c326c9eae546a83232868ba19ffe165cf43b442102a254ca4e3</cites><orcidid>0009-0006-1552-7907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftcr.202300247$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftcr.202300247$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37933973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samreen, Ayesha</creatorcontrib><creatorcontrib>Ali, Muhammad Sudais</creatorcontrib><creatorcontrib>Huzaifa, Muhammad</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><creatorcontrib>Hassan, Bilal</creatorcontrib><creatorcontrib>Ullah, Fazl</creatorcontrib><creatorcontrib>Ali, Shahid</creatorcontrib><creatorcontrib>Arifin, Nor Anisa</creatorcontrib><title>Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review</title><title>Chemical record</title><addtitle>Chem Rec</addtitle><description>The high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (&gt;800 °C) to intermediate/low operating temperature (400 °C&lt;T&lt;800 °C) in SOFCs in order to extend their life span, thermal compatibility, cost‐effectiveness, and ease of fabrication. However, the major challenges in developing cathode materials for low/intermediate temperature SOFCs include structural stability, catalytic activity for oxygen adsorption and reduction, and tolerance against contaminants such as chromium, boron, and sulfur. This research aims to provide an updated review of the perovskite‐based state‐of‐the‐art cathode materials LaSrMnO3 (LSM) and LaSrCOFeO3 (LSCF), as well as the recent trending Ruddlesden‐Popper phase (RP) and double perovskite‐structured materials SOFCs technology. Our review highlights various strategies such as surface modification, codoping, infiltration/impregnation, and composites with fluorite phases to address the challenges related to LSM/LSCF‐based electrode materials and improve their electrocatalytic activity. Moreover, this study also offers insight into the electrochemical performance of the double perovskite oxides and Ruddlesden‐Popper phase materials as cathodes for SOFCs. This review offers insight into perovskite‐based SOFC cathodes′ transition to low‐temp operation, addressing their stability, catalytic property, ongoing challenges, and future prospects.</description><subject>Boron</subject><subject>Catalytic activity</subject><subject>Cathodes</subject><subject>Chromium</subject><subject>Clean energy</subject><subject>Contaminants</subject><subject>double perovskite</subject><subject>Electric power generation</subject><subject>electrochemical activity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Fabrication</subject><subject>Fluorite</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>High temperature</subject><subject>Life span</subject><subject>Low temperature</subject><subject>Operating temperature</subject><subject>Perovskites</subject><subject>polarization resistance</subject><subject>Power plants</subject><subject>Reviews</subject><subject>Ruddlesden-Popper phase</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><subject>Structural stability</subject><subject>Sulfur</subject><subject>thermal expansion coefficient</subject><subject>Thermal power</subject><subject>Thermal power plants</subject><issn>1527-8999</issn><issn>1528-0691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAUha2Kqry6ZIsssekm1K_EcXdDVGglEIjO3nKcGzBN4sFOZmDHT-A38kvqdnhILLq6R7rfPbo6B6E9Sg4pIezraMMhI4wnLeQHtEVzVmakUHTjn5ZZqZTaRNsx3hBCqZDyE9rkUnGuJN9CV7NmaQYLPQxjxG7AFxD8Mv52Izw9PB6ZCA2uzHjtG8BnZoTgTBdx6wP-5TvX4PM7lzbHE3S4gq6L3_AMV75fBLiGIbol4EtYOljtoo9tuoTPz3MHzY-_z6sf2en5yc9qdppZXiiZWcNsk0te11zllrPCKjCQi8KUnHFWFmVtqGpboEVuW8FrIRglzLBcWCOA76Ava9tF8LcTxFH3Ltr0mBnAT1GzsiyUSGnRhB68Q2_8FIb0nGaKciYV4ypR2ZqywccYoNWL4HoT7jUl-m8BOhWgXwtI_P6z61T30LzSL4knQK6Blevg_v9uel5dvln_AVxgkVw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Samreen, Ayesha</creator><creator>Ali, Muhammad Sudais</creator><creator>Huzaifa, Muhammad</creator><creator>Ali, Nasir</creator><creator>Hassan, Bilal</creator><creator>Ullah, Fazl</creator><creator>Ali, Shahid</creator><creator>Arifin, Nor Anisa</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0006-1552-7907</orcidid></search><sort><creationdate>202401</creationdate><title>Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review</title><author>Samreen, Ayesha ; Ali, Muhammad Sudais ; Huzaifa, Muhammad ; Ali, Nasir ; Hassan, Bilal ; Ullah, Fazl ; Ali, Shahid ; Arifin, Nor Anisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3697-ca2cd573bb395c326c9eae546a83232868ba19ffe165cf43b442102a254ca4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boron</topic><topic>Catalytic activity</topic><topic>Cathodes</topic><topic>Chromium</topic><topic>Clean energy</topic><topic>Contaminants</topic><topic>double perovskite</topic><topic>Electric power generation</topic><topic>electrochemical activity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Fabrication</topic><topic>Fluorite</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>High temperature</topic><topic>Life span</topic><topic>Low temperature</topic><topic>Operating temperature</topic><topic>Perovskites</topic><topic>polarization resistance</topic><topic>Power plants</topic><topic>Reviews</topic><topic>Ruddlesden-Popper phase</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><topic>Structural stability</topic><topic>Sulfur</topic><topic>thermal expansion coefficient</topic><topic>Thermal power</topic><topic>Thermal power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samreen, Ayesha</creatorcontrib><creatorcontrib>Ali, Muhammad Sudais</creatorcontrib><creatorcontrib>Huzaifa, Muhammad</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><creatorcontrib>Hassan, Bilal</creatorcontrib><creatorcontrib>Ullah, Fazl</creatorcontrib><creatorcontrib>Ali, Shahid</creatorcontrib><creatorcontrib>Arifin, Nor Anisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samreen, Ayesha</au><au>Ali, Muhammad Sudais</au><au>Huzaifa, Muhammad</au><au>Ali, Nasir</au><au>Hassan, Bilal</au><au>Ullah, Fazl</au><au>Ali, Shahid</au><au>Arifin, Nor Anisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review</atitle><jtitle>Chemical record</jtitle><addtitle>Chem Rec</addtitle><date>2024-01</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>e202300247</spage><epage>n/a</epage><pages>e202300247-n/a</pages><issn>1527-8999</issn><eissn>1528-0691</eissn><abstract>The high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (&gt;800 °C) to intermediate/low operating temperature (400 °C&lt;T&lt;800 °C) in SOFCs in order to extend their life span, thermal compatibility, cost‐effectiveness, and ease of fabrication. However, the major challenges in developing cathode materials for low/intermediate temperature SOFCs include structural stability, catalytic activity for oxygen adsorption and reduction, and tolerance against contaminants such as chromium, boron, and sulfur. This research aims to provide an updated review of the perovskite‐based state‐of‐the‐art cathode materials LaSrMnO3 (LSM) and LaSrCOFeO3 (LSCF), as well as the recent trending Ruddlesden‐Popper phase (RP) and double perovskite‐structured materials SOFCs technology. Our review highlights various strategies such as surface modification, codoping, infiltration/impregnation, and composites with fluorite phases to address the challenges related to LSM/LSCF‐based electrode materials and improve their electrocatalytic activity. Moreover, this study also offers insight into the electrochemical performance of the double perovskite oxides and Ruddlesden‐Popper phase materials as cathodes for SOFCs. This review offers insight into perovskite‐based SOFC cathodes′ transition to low‐temp operation, addressing their stability, catalytic property, ongoing challenges, and future prospects.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37933973</pmid><doi>10.1002/tcr.202300247</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0006-1552-7907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1527-8999
ispartof Chemical record, 2024-01, Vol.24 (1), p.e202300247-n/a
issn 1527-8999
1528-0691
language eng
recordid cdi_proquest_miscellaneous_2886942301
source Access via Wiley Online Library
subjects Boron
Catalytic activity
Cathodes
Chromium
Clean energy
Contaminants
double perovskite
Electric power generation
electrochemical activity
Electrochemical analysis
Electrochemistry
Electrode materials
Electrons
Fabrication
Fluorite
Fuel cells
Fuel technology
High temperature
Life span
Low temperature
Operating temperature
Perovskites
polarization resistance
Power plants
Reviews
Ruddlesden-Popper phase
Solid oxide fuel cell
Solid oxide fuel cells
Structural stability
Sulfur
thermal expansion coefficient
Thermal power
Thermal power plants
title Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancements%20in%20Perovskite%E2%80%90Based%20Cathode%20Materials%20for%20Solid%20Oxide%20Fuel%20Cells:%20A%20Comprehensive%20Review&rft.jtitle=Chemical%20record&rft.au=Samreen,%20Ayesha&rft.date=2024-01&rft.volume=24&rft.issue=1&rft.spage=e202300247&rft.epage=n/a&rft.pages=e202300247-n/a&rft.issn=1527-8999&rft.eissn=1528-0691&rft_id=info:doi/10.1002/tcr.202300247&rft_dat=%3Cproquest_cross%3E2913279239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913279239&rft_id=info:pmid/37933973&rfr_iscdi=true