Cargo Size Limits and Forces of Cell‐Driven Microtransport
The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell–cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo sp...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (11), p.e2304666-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e2304666 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sharifi Panah, Setareh Großmann, Robert Lepro, Valentino Beta, Carsten |
description | The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell–cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell–cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell‐driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.
This study reveals the potentials and limitations of an amoeboid cell‐driven system that moves microparticles as large as red blood cells and up to ≈240 microns in diameter while exerting forces in the sub‐piconewton range on cargoes. The cell‐generated forces increase in response to persistent drag on the cargo, highlighting the mechanoresponsive adaptation of this biohybrid system in complex environments. |
doi_str_mv | 10.1002/smll.202304666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886942226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886942226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-e2c7256114ea9a69783a8fd5c8f96d80384b4c77d5817dd52c67da96ff195e803</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRrFa3LiXgxk3q3DIXcCPRqpDioroeppmJTMmlziRKXfkIPqNPYkprBTeuzoHznY9zfgBOEBwhCPFFqMpyhCEmkDLGdsABYojETGC5u-0RHIDDEOYQEoQp3wcDwiUhHKEDcJlq_9xEU_duo8xVrg2Rrk00bnxuQ9QUUWrL8uvj89q7V1tHE5f7pvW6DovGt0dgr9BlsMebOgRP45vH9C7OHm7v06sszikiLLY45zhhCFGrpWaSC6JFYZJcFJIZAYmgM5pzbhKBuDEJzhk3WrKiQDKx_XwIztfehW9eOhtaVbmQ94fp2jZdUFgIJinGmPXo2R903nS-7q9TWCYcUYIx76nRmuq_CcHbQi28q7RfKgTVKle1ylVtc-0XTjfablZZs8V_guwBuQbeXGmX_-jUdJJlv_JvXoeDUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957143227</pqid></control><display><type>article</type><title>Cargo Size Limits and Forces of Cell‐Driven Microtransport</title><source>Access via Wiley Online Library</source><creator>Sharifi Panah, Setareh ; Großmann, Robert ; Lepro, Valentino ; Beta, Carsten</creator><creatorcontrib>Sharifi Panah, Setareh ; Großmann, Robert ; Lepro, Valentino ; Beta, Carsten</creatorcontrib><description>The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell–cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell–cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell‐driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.
This study reveals the potentials and limitations of an amoeboid cell‐driven system that moves microparticles as large as red blood cells and up to ≈240 microns in diameter while exerting forces in the sub‐piconewton range on cargoes. The cell‐generated forces increase in response to persistent drag on the cargo, highlighting the mechanoresponsive adaptation of this biohybrid system in complex environments.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202304666</identifier><identifier>PMID: 37933711</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>active microtransport ; amoeboid motion ; biohybrid systems ; Cargo ; cell migration forces ; Drag ; mechanosensing ; Microrobots ; Viscous drag</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (11), p.e2304666-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-e2c7256114ea9a69783a8fd5c8f96d80384b4c77d5817dd52c67da96ff195e803</citedby><cites>FETCH-LOGICAL-c4136-e2c7256114ea9a69783a8fd5c8f96d80384b4c77d5817dd52c67da96ff195e803</cites><orcidid>0000-0001-7960-7849 ; 0000-0002-9817-2032 ; 0000-0002-4717-7888 ; 0000-0002-0100-1043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202304666$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202304666$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37933711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifi Panah, Setareh</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Lepro, Valentino</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><title>Cargo Size Limits and Forces of Cell‐Driven Microtransport</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell–cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell–cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell‐driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.
This study reveals the potentials and limitations of an amoeboid cell‐driven system that moves microparticles as large as red blood cells and up to ≈240 microns in diameter while exerting forces in the sub‐piconewton range on cargoes. The cell‐generated forces increase in response to persistent drag on the cargo, highlighting the mechanoresponsive adaptation of this biohybrid system in complex environments.</description><subject>active microtransport</subject><subject>amoeboid motion</subject><subject>biohybrid systems</subject><subject>Cargo</subject><subject>cell migration forces</subject><subject>Drag</subject><subject>mechanosensing</subject><subject>Microrobots</subject><subject>Viscous drag</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMtKw0AUhgdRrFa3LiXgxk3q3DIXcCPRqpDioroeppmJTMmlziRKXfkIPqNPYkprBTeuzoHznY9zfgBOEBwhCPFFqMpyhCEmkDLGdsABYojETGC5u-0RHIDDEOYQEoQp3wcDwiUhHKEDcJlq_9xEU_duo8xVrg2Rrk00bnxuQ9QUUWrL8uvj89q7V1tHE5f7pvW6DovGt0dgr9BlsMebOgRP45vH9C7OHm7v06sszikiLLY45zhhCFGrpWaSC6JFYZJcFJIZAYmgM5pzbhKBuDEJzhk3WrKiQDKx_XwIztfehW9eOhtaVbmQ94fp2jZdUFgIJinGmPXo2R903nS-7q9TWCYcUYIx76nRmuq_CcHbQi28q7RfKgTVKle1ylVtc-0XTjfablZZs8V_guwBuQbeXGmX_-jUdJJlv_JvXoeDUg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sharifi Panah, Setareh</creator><creator>Großmann, Robert</creator><creator>Lepro, Valentino</creator><creator>Beta, Carsten</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7960-7849</orcidid><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-4717-7888</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid></search><sort><creationdate>20240301</creationdate><title>Cargo Size Limits and Forces of Cell‐Driven Microtransport</title><author>Sharifi Panah, Setareh ; Großmann, Robert ; Lepro, Valentino ; Beta, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-e2c7256114ea9a69783a8fd5c8f96d80384b4c77d5817dd52c67da96ff195e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active microtransport</topic><topic>amoeboid motion</topic><topic>biohybrid systems</topic><topic>Cargo</topic><topic>cell migration forces</topic><topic>Drag</topic><topic>mechanosensing</topic><topic>Microrobots</topic><topic>Viscous drag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi Panah, Setareh</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Lepro, Valentino</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi Panah, Setareh</au><au>Großmann, Robert</au><au>Lepro, Valentino</au><au>Beta, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cargo Size Limits and Forces of Cell‐Driven Microtransport</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>e2304666</spage><epage>n/a</epage><pages>e2304666-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell–cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell–cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell‐driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.
This study reveals the potentials and limitations of an amoeboid cell‐driven system that moves microparticles as large as red blood cells and up to ≈240 microns in diameter while exerting forces in the sub‐piconewton range on cargoes. The cell‐generated forces increase in response to persistent drag on the cargo, highlighting the mechanoresponsive adaptation of this biohybrid system in complex environments.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37933711</pmid><doi>10.1002/smll.202304666</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7960-7849</orcidid><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-4717-7888</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (11), p.e2304666-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2886942226 |
source | Access via Wiley Online Library |
subjects | active microtransport amoeboid motion biohybrid systems Cargo cell migration forces Drag mechanosensing Microrobots Viscous drag |
title | Cargo Size Limits and Forces of Cell‐Driven Microtransport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cargo%20Size%20Limits%20and%20Forces%20of%20Cell%E2%80%90Driven%20Microtransport&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sharifi%20Panah,%20Setareh&rft.date=2024-03-01&rft.volume=20&rft.issue=11&rft.spage=e2304666&rft.epage=n/a&rft.pages=e2304666-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202304666&rft_dat=%3Cproquest_cross%3E2886942226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957143227&rft_id=info:pmid/37933711&rfr_iscdi=true |