Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors
In the United States (U.S.), studies on nitrogen dioxide (NO ) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO meas...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-12, Vol.57 (48), p.19532-19544 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19544 |
---|---|
container_issue | 48 |
container_start_page | 19532 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Kerr, Gaige Hunter Goldberg, Daniel L Harris, Maria H Henderson, Barron H Hystad, Perry Roy, Ananya Anenberg, Susan C |
description | In the United States (U.S.), studies on nitrogen dioxide (NO
) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO
measurements and estimates of NO
estimates from land-use regression and photochemical models, can aid in assessing NO
exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO
levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO
disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO
. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO
. |
doi_str_mv | 10.1021/acs.est.3c03999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886941506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886941506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-164f73071111b8f6d83dfb4618c30b7c0d9fa2c4a0e8ba8f4faaee8b247860c13</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhoO46Phx9iYBLx7ssdLpSSfeZMaPBVeFUfDWpNOJRrqTMUnD-gP2f28Gxz1sLlWknvelqBehIwJTAiU5lypOdUxTqoAKIbbQhMxKKGZ8RrbRBIDQQlD2sov2YnwHgJIC30G7tBa0mgGboD9X6c35IJWVPV7YuJLBJqsjtg7f2xT8q3b53_-2ncaPvu_HZL1bT9Obxs_OJt3hZZJJxws898Na717xQiaJlzpFbIIf8DLP-z6z8Qz_8p3uc5Wuy3028CEeoB9G9lEfbuo-er6-eprfFncPNz_nl3eFooylgrDK1BRqkl_LDes47UxbMcIVhbZW0AkjS1VJ0LyV3FRGSp3bsqo5A0XoPjr98l0F_zHmwzWDjSqvJp32Y2xKzpmoSL5MRk_-Q9_9GFzerikFAONUkDJT51-UCj7GoE2zCnaQ4bMh0KwTanJCzVq9SSgrjje-Yzvo7h__HQn9C72mjuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900683912</pqid></control><display><type>article</type><title>Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kerr, Gaige Hunter ; Goldberg, Daniel L ; Harris, Maria H ; Henderson, Barron H ; Hystad, Perry ; Roy, Ananya ; Anenberg, Susan C</creator><creatorcontrib>Kerr, Gaige Hunter ; Goldberg, Daniel L ; Harris, Maria H ; Henderson, Barron H ; Hystad, Perry ; Roy, Ananya ; Anenberg, Susan C</creatorcontrib><description>In the United States (U.S.), studies on nitrogen dioxide (NO
) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO
measurements and estimates of NO
estimates from land-use regression and photochemical models, can aid in assessing NO
exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO
levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO
disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO
. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO
.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c03999</identifier><identifier>PMID: 37934506</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air Pollutants - analysis ; Air Pollution - analysis ; Datasets ; Environmental Exposure ; Environmental Monitoring ; Estimates ; Exposure ; Land use ; Mathematical models ; Monitoring ; Monitors ; Nitrogen dioxide ; Nitrogen Dioxide - analysis ; Particulate Matter - analysis ; Photochemicals ; Pollution ; Regression analysis ; Remote sensing ; Satellite tracking ; Satellites ; Spatial discrimination ; Spatial resolution ; Spatial variations ; Statistical analysis ; Statistical models ; Subgroups ; United States ; Urban areas</subject><ispartof>Environmental science & technology, 2023-12, Vol.57 (48), p.19532-19544</ispartof><rights>Copyright American Chemical Society Dec 5, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-164f73071111b8f6d83dfb4618c30b7c0d9fa2c4a0e8ba8f4faaee8b247860c13</citedby><cites>FETCH-LOGICAL-c366t-164f73071111b8f6d83dfb4618c30b7c0d9fa2c4a0e8ba8f4faaee8b247860c13</cites><orcidid>0000-0001-8869-0752 ; 0000-0002-6755-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2763,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37934506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerr, Gaige Hunter</creatorcontrib><creatorcontrib>Goldberg, Daniel L</creatorcontrib><creatorcontrib>Harris, Maria H</creatorcontrib><creatorcontrib>Henderson, Barron H</creatorcontrib><creatorcontrib>Hystad, Perry</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Anenberg, Susan C</creatorcontrib><title>Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors</title><title>Environmental science & technology</title><addtitle>Environ Sci Technol</addtitle><description>In the United States (U.S.), studies on nitrogen dioxide (NO
) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO
measurements and estimates of NO
estimates from land-use regression and photochemical models, can aid in assessing NO
exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO
levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO
disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO
. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO
.</description><subject>Air Pollutants - analysis</subject><subject>Air Pollution - analysis</subject><subject>Datasets</subject><subject>Environmental Exposure</subject><subject>Environmental Monitoring</subject><subject>Estimates</subject><subject>Exposure</subject><subject>Land use</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen Dioxide - analysis</subject><subject>Particulate Matter - analysis</subject><subject>Photochemicals</subject><subject>Pollution</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spatial variations</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Subgroups</subject><subject>United States</subject><subject>Urban areas</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1LJDEQhoO46Phx9iYBLx7ssdLpSSfeZMaPBVeFUfDWpNOJRrqTMUnD-gP2f28Gxz1sLlWknvelqBehIwJTAiU5lypOdUxTqoAKIbbQhMxKKGZ8RrbRBIDQQlD2sov2YnwHgJIC30G7tBa0mgGboD9X6c35IJWVPV7YuJLBJqsjtg7f2xT8q3b53_-2ncaPvu_HZL1bT9Obxs_OJt3hZZJJxws898Na717xQiaJlzpFbIIf8DLP-z6z8Qz_8p3uc5Wuy3028CEeoB9G9lEfbuo-er6-eprfFncPNz_nl3eFooylgrDK1BRqkl_LDes47UxbMcIVhbZW0AkjS1VJ0LyV3FRGSp3bsqo5A0XoPjr98l0F_zHmwzWDjSqvJp32Y2xKzpmoSL5MRk_-Q9_9GFzerikFAONUkDJT51-UCj7GoE2zCnaQ4bMh0KwTanJCzVq9SSgrjje-Yzvo7h__HQn9C72mjuA</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Kerr, Gaige Hunter</creator><creator>Goldberg, Daniel L</creator><creator>Harris, Maria H</creator><creator>Henderson, Barron H</creator><creator>Hystad, Perry</creator><creator>Roy, Ananya</creator><creator>Anenberg, Susan C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8869-0752</orcidid><orcidid>https://orcid.org/0000-0002-6755-3051</orcidid></search><sort><creationdate>20231205</creationdate><title>Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors</title><author>Kerr, Gaige Hunter ; Goldberg, Daniel L ; Harris, Maria H ; Henderson, Barron H ; Hystad, Perry ; Roy, Ananya ; Anenberg, Susan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-164f73071111b8f6d83dfb4618c30b7c0d9fa2c4a0e8ba8f4faaee8b247860c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air Pollutants - analysis</topic><topic>Air Pollution - analysis</topic><topic>Datasets</topic><topic>Environmental Exposure</topic><topic>Environmental Monitoring</topic><topic>Estimates</topic><topic>Exposure</topic><topic>Land use</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen Dioxide - analysis</topic><topic>Particulate Matter - analysis</topic><topic>Photochemicals</topic><topic>Pollution</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spatial variations</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Subgroups</topic><topic>United States</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerr, Gaige Hunter</creatorcontrib><creatorcontrib>Goldberg, Daniel L</creatorcontrib><creatorcontrib>Harris, Maria H</creatorcontrib><creatorcontrib>Henderson, Barron H</creatorcontrib><creatorcontrib>Hystad, Perry</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Anenberg, Susan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerr, Gaige Hunter</au><au>Goldberg, Daniel L</au><au>Harris, Maria H</au><au>Henderson, Barron H</au><au>Hystad, Perry</au><au>Roy, Ananya</au><au>Anenberg, Susan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ Sci Technol</addtitle><date>2023-12-05</date><risdate>2023</risdate><volume>57</volume><issue>48</issue><spage>19532</spage><epage>19544</epage><pages>19532-19544</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>In the United States (U.S.), studies on nitrogen dioxide (NO
) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO
measurements and estimates of NO
estimates from land-use regression and photochemical models, can aid in assessing NO
exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO
levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO
disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO
. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO
.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37934506</pmid><doi>10.1021/acs.est.3c03999</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8869-0752</orcidid><orcidid>https://orcid.org/0000-0002-6755-3051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-12, Vol.57 (48), p.19532-19544 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2886941506 |
source | MEDLINE; ACS Publications |
subjects | Air Pollutants - analysis Air Pollution - analysis Datasets Environmental Exposure Environmental Monitoring Estimates Exposure Land use Mathematical models Monitoring Monitors Nitrogen dioxide Nitrogen Dioxide - analysis Particulate Matter - analysis Photochemicals Pollution Regression analysis Remote sensing Satellite tracking Satellites Spatial discrimination Spatial resolution Spatial variations Statistical analysis Statistical models Subgroups United States Urban areas |
title | Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethnoracial%20Disparities%20in%20Nitrogen%20Dioxide%20Pollution%20in%20the%20United%20States:%20Comparing%20Data%20Sets%20from%20Satellites,%20Models,%20and%20Monitors&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kerr,%20Gaige%20Hunter&rft.date=2023-12-05&rft.volume=57&rft.issue=48&rft.spage=19532&rft.epage=19544&rft.pages=19532-19544&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c03999&rft_dat=%3Cproquest_cross%3E2886941506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900683912&rft_id=info:pmid/37934506&rfr_iscdi=true |