Turing Instability of Liquid–Solid Metal Systems

The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-02, Vol.36 (7), p.e2309999-n/a
Hauptverfasser: Xing, Zerong, Zhang, Genpei, Gao, Jianye, Ye, Jiao, Zhou, Zhuquan, Liu, Biying, Yan, Xiaotong, Chen, Xueqing, Guo, Minghui, Yue, Kai, Li, Xuanze, Wang, Qian, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e2309999
container_title Advanced materials (Weinheim)
container_volume 36
creator Xing, Zerong
Zhang, Genpei
Gao, Jianye
Ye, Jiao
Zhou, Zhuquan
Liu, Biying
Yan, Xiaotong
Chen, Xueqing
Guo, Minghui
Yue, Kai
Li, Xuanze
Wang, Qian
Liu, Jing
description The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process. A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.
doi_str_mv 10.1002/adma.202309999
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886938372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886938372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EoqWwMqJILCwpfsceK56VWjG0zJZjO8hVHm2cCGXjH_hDvoRULUVi4S53Offo6gBwieAYQYhvtS30GENMoOznCAwRwyimULJjMISSsFhyKgbgLIQVhFByyE_BgCSSIInkEOBlW_vyLZqWodGpz33TRVUWzfym9fbr43NR5d5Gc9foPFp0oXFFOAcnmc6Du9jvEXh9fFjePcezl6fp3WQWG5IQGTPGEbHGMiMxw0JTYRImkUsFFc5xylLjJGcWIcITKiDNrMmyzAkuesZCMgI3O--6rjatC40qfDAuz3XpqjYoLASXRJAE9-j1H3RVtXXZf6ewxJywRCS0p8Y7ytRVCLXL1Lr2ha47haDa1lTbmupQsz-42mvbtHD2gP_k6wG5A9597rp_dGpyP5_8yr8BNB6ANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926357874</pqid></control><display><type>article</type><title>Turing Instability of Liquid–Solid Metal Systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</creator><creatorcontrib>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</creatorcontrib><description>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process. A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309999</identifier><identifier>PMID: 37931919</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>competitive reactions ; Gallium ; Indium base alloys ; Intermetallic compounds ; Liquid metals ; liquid–solid metal interfaces ; Morphogenesis ; morphogenesis processes ; reaction‐diffusion systems ; Silver ; Stability ; Substrates ; Turing instability</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2309999-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</citedby><cites>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</cites><orcidid>0000-0001-8800-1312 ; 0000-0002-0844-5296 ; 0000-0001-9832-5986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202309999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202309999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37931919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Zerong</creatorcontrib><creatorcontrib>Zhang, Genpei</creatorcontrib><creatorcontrib>Gao, Jianye</creatorcontrib><creatorcontrib>Ye, Jiao</creatorcontrib><creatorcontrib>Zhou, Zhuquan</creatorcontrib><creatorcontrib>Liu, Biying</creatorcontrib><creatorcontrib>Yan, Xiaotong</creatorcontrib><creatorcontrib>Chen, Xueqing</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Yue, Kai</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><title>Turing Instability of Liquid–Solid Metal Systems</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process. A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</description><subject>competitive reactions</subject><subject>Gallium</subject><subject>Indium base alloys</subject><subject>Intermetallic compounds</subject><subject>Liquid metals</subject><subject>liquid–solid metal interfaces</subject><subject>Morphogenesis</subject><subject>morphogenesis processes</subject><subject>reaction‐diffusion systems</subject><subject>Silver</subject><subject>Stability</subject><subject>Substrates</subject><subject>Turing instability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EoqWwMqJILCwpfsceK56VWjG0zJZjO8hVHm2cCGXjH_hDvoRULUVi4S53Offo6gBwieAYQYhvtS30GENMoOznCAwRwyimULJjMISSsFhyKgbgLIQVhFByyE_BgCSSIInkEOBlW_vyLZqWodGpz33TRVUWzfym9fbr43NR5d5Gc9foPFp0oXFFOAcnmc6Du9jvEXh9fFjePcezl6fp3WQWG5IQGTPGEbHGMiMxw0JTYRImkUsFFc5xylLjJGcWIcITKiDNrMmyzAkuesZCMgI3O--6rjatC40qfDAuz3XpqjYoLASXRJAE9-j1H3RVtXXZf6ewxJywRCS0p8Y7ytRVCLXL1Lr2ha47haDa1lTbmupQsz-42mvbtHD2gP_k6wG5A9597rp_dGpyP5_8yr8BNB6ANQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Xing, Zerong</creator><creator>Zhang, Genpei</creator><creator>Gao, Jianye</creator><creator>Ye, Jiao</creator><creator>Zhou, Zhuquan</creator><creator>Liu, Biying</creator><creator>Yan, Xiaotong</creator><creator>Chen, Xueqing</creator><creator>Guo, Minghui</creator><creator>Yue, Kai</creator><creator>Li, Xuanze</creator><creator>Wang, Qian</creator><creator>Liu, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8800-1312</orcidid><orcidid>https://orcid.org/0000-0002-0844-5296</orcidid><orcidid>https://orcid.org/0000-0001-9832-5986</orcidid></search><sort><creationdate>20240201</creationdate><title>Turing Instability of Liquid–Solid Metal Systems</title><author>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>competitive reactions</topic><topic>Gallium</topic><topic>Indium base alloys</topic><topic>Intermetallic compounds</topic><topic>Liquid metals</topic><topic>liquid–solid metal interfaces</topic><topic>Morphogenesis</topic><topic>morphogenesis processes</topic><topic>reaction‐diffusion systems</topic><topic>Silver</topic><topic>Stability</topic><topic>Substrates</topic><topic>Turing instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zerong</creatorcontrib><creatorcontrib>Zhang, Genpei</creatorcontrib><creatorcontrib>Gao, Jianye</creatorcontrib><creatorcontrib>Ye, Jiao</creatorcontrib><creatorcontrib>Zhou, Zhuquan</creatorcontrib><creatorcontrib>Liu, Biying</creatorcontrib><creatorcontrib>Yan, Xiaotong</creatorcontrib><creatorcontrib>Chen, Xueqing</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Yue, Kai</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zerong</au><au>Zhang, Genpei</au><au>Gao, Jianye</au><au>Ye, Jiao</au><au>Zhou, Zhuquan</au><au>Liu, Biying</au><au>Yan, Xiaotong</au><au>Chen, Xueqing</au><au>Guo, Minghui</au><au>Yue, Kai</au><au>Li, Xuanze</au><au>Wang, Qian</au><au>Liu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turing Instability of Liquid–Solid Metal Systems</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>e2309999</spage><epage>n/a</epage><pages>e2309999-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process. A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37931919</pmid><doi>10.1002/adma.202309999</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8800-1312</orcidid><orcidid>https://orcid.org/0000-0002-0844-5296</orcidid><orcidid>https://orcid.org/0000-0001-9832-5986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2309999-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2886938372
source Wiley Online Library Journals Frontfile Complete
subjects competitive reactions
Gallium
Indium base alloys
Intermetallic compounds
Liquid metals
liquid–solid metal interfaces
Morphogenesis
morphogenesis processes
reaction‐diffusion systems
Silver
Stability
Substrates
Turing instability
title Turing Instability of Liquid–Solid Metal Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turing%20Instability%20of%20Liquid%E2%80%93Solid%20Metal%20Systems&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xing,%20Zerong&rft.date=2024-02-01&rft.volume=36&rft.issue=7&rft.spage=e2309999&rft.epage=n/a&rft.pages=e2309999-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309999&rft_dat=%3Cproquest_cross%3E2886938372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926357874&rft_id=info:pmid/37931919&rfr_iscdi=true