Turing Instability of Liquid–Solid Metal Systems
The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) a...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-02, Vol.36 (7), p.e2309999-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e2309999 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Xing, Zerong Zhang, Genpei Gao, Jianye Ye, Jiao Zhou, Zhuquan Liu, Biying Yan, Xiaotong Chen, Xueqing Guo, Minghui Yue, Kai Li, Xuanze Wang, Qian Liu, Jing |
description | The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.
A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve. |
doi_str_mv | 10.1002/adma.202309999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886938372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886938372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EoqWwMqJILCwpfsceK56VWjG0zJZjO8hVHm2cCGXjH_hDvoRULUVi4S53Offo6gBwieAYQYhvtS30GENMoOznCAwRwyimULJjMISSsFhyKgbgLIQVhFByyE_BgCSSIInkEOBlW_vyLZqWodGpz33TRVUWzfym9fbr43NR5d5Gc9foPFp0oXFFOAcnmc6Du9jvEXh9fFjePcezl6fp3WQWG5IQGTPGEbHGMiMxw0JTYRImkUsFFc5xylLjJGcWIcITKiDNrMmyzAkuesZCMgI3O--6rjatC40qfDAuz3XpqjYoLASXRJAE9-j1H3RVtXXZf6ewxJywRCS0p8Y7ytRVCLXL1Lr2ha47haDa1lTbmupQsz-42mvbtHD2gP_k6wG5A9597rp_dGpyP5_8yr8BNB6ANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926357874</pqid></control><display><type>article</type><title>Turing Instability of Liquid–Solid Metal Systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</creator><creatorcontrib>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</creatorcontrib><description>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.
A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309999</identifier><identifier>PMID: 37931919</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>competitive reactions ; Gallium ; Indium base alloys ; Intermetallic compounds ; Liquid metals ; liquid–solid metal interfaces ; Morphogenesis ; morphogenesis processes ; reaction‐diffusion systems ; Silver ; Stability ; Substrates ; Turing instability</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2309999-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</citedby><cites>FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</cites><orcidid>0000-0001-8800-1312 ; 0000-0002-0844-5296 ; 0000-0001-9832-5986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202309999$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202309999$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37931919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Zerong</creatorcontrib><creatorcontrib>Zhang, Genpei</creatorcontrib><creatorcontrib>Gao, Jianye</creatorcontrib><creatorcontrib>Ye, Jiao</creatorcontrib><creatorcontrib>Zhou, Zhuquan</creatorcontrib><creatorcontrib>Liu, Biying</creatorcontrib><creatorcontrib>Yan, Xiaotong</creatorcontrib><creatorcontrib>Chen, Xueqing</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Yue, Kai</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><title>Turing Instability of Liquid–Solid Metal Systems</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.
A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</description><subject>competitive reactions</subject><subject>Gallium</subject><subject>Indium base alloys</subject><subject>Intermetallic compounds</subject><subject>Liquid metals</subject><subject>liquid–solid metal interfaces</subject><subject>Morphogenesis</subject><subject>morphogenesis processes</subject><subject>reaction‐diffusion systems</subject><subject>Silver</subject><subject>Stability</subject><subject>Substrates</subject><subject>Turing instability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EoqWwMqJILCwpfsceK56VWjG0zJZjO8hVHm2cCGXjH_hDvoRULUVi4S53Offo6gBwieAYQYhvtS30GENMoOznCAwRwyimULJjMISSsFhyKgbgLIQVhFByyE_BgCSSIInkEOBlW_vyLZqWodGpz33TRVUWzfym9fbr43NR5d5Gc9foPFp0oXFFOAcnmc6Du9jvEXh9fFjePcezl6fp3WQWG5IQGTPGEbHGMiMxw0JTYRImkUsFFc5xylLjJGcWIcITKiDNrMmyzAkuesZCMgI3O--6rjatC40qfDAuz3XpqjYoLASXRJAE9-j1H3RVtXXZf6ewxJywRCS0p8Y7ytRVCLXL1Lr2ha47haDa1lTbmupQsz-42mvbtHD2gP_k6wG5A9597rp_dGpyP5_8yr8BNB6ANQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Xing, Zerong</creator><creator>Zhang, Genpei</creator><creator>Gao, Jianye</creator><creator>Ye, Jiao</creator><creator>Zhou, Zhuquan</creator><creator>Liu, Biying</creator><creator>Yan, Xiaotong</creator><creator>Chen, Xueqing</creator><creator>Guo, Minghui</creator><creator>Yue, Kai</creator><creator>Li, Xuanze</creator><creator>Wang, Qian</creator><creator>Liu, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8800-1312</orcidid><orcidid>https://orcid.org/0000-0002-0844-5296</orcidid><orcidid>https://orcid.org/0000-0001-9832-5986</orcidid></search><sort><creationdate>20240201</creationdate><title>Turing Instability of Liquid–Solid Metal Systems</title><author>Xing, Zerong ; Zhang, Genpei ; Gao, Jianye ; Ye, Jiao ; Zhou, Zhuquan ; Liu, Biying ; Yan, Xiaotong ; Chen, Xueqing ; Guo, Minghui ; Yue, Kai ; Li, Xuanze ; Wang, Qian ; Liu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-55613dcd5c92528a48c7591eb848ee645bce965d113674804fdcfffe868eb8d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>competitive reactions</topic><topic>Gallium</topic><topic>Indium base alloys</topic><topic>Intermetallic compounds</topic><topic>Liquid metals</topic><topic>liquid–solid metal interfaces</topic><topic>Morphogenesis</topic><topic>morphogenesis processes</topic><topic>reaction‐diffusion systems</topic><topic>Silver</topic><topic>Stability</topic><topic>Substrates</topic><topic>Turing instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zerong</creatorcontrib><creatorcontrib>Zhang, Genpei</creatorcontrib><creatorcontrib>Gao, Jianye</creatorcontrib><creatorcontrib>Ye, Jiao</creatorcontrib><creatorcontrib>Zhou, Zhuquan</creatorcontrib><creatorcontrib>Liu, Biying</creatorcontrib><creatorcontrib>Yan, Xiaotong</creatorcontrib><creatorcontrib>Chen, Xueqing</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Yue, Kai</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zerong</au><au>Zhang, Genpei</au><au>Gao, Jianye</au><au>Ye, Jiao</au><au>Zhou, Zhuquan</au><au>Liu, Biying</au><au>Yan, Xiaotong</au><au>Chen, Xueqing</au><au>Guo, Minghui</au><au>Yue, Kai</au><au>Li, Xuanze</au><au>Wang, Qian</au><au>Liu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turing Instability of Liquid–Solid Metal Systems</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>e2309999</spage><epage>n/a</epage><pages>e2309999-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots‐like stationary Turing patterns in the LM–SM reaction‐diffusion systems (GaX‐Y), taking the gallium indium alloy and silver substrate (GaIn‐Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.
A generalized Turing‐instability mechanism utilizing liquid metal (GaX)‐solid metal (Y film) reaction‐diffusion systems has been disclosed. By designing GaX metal pairs owing appropriate reaction kinetics and diffusion coefficients with Y, labyrinths, stripes, and spots‐like Turing structures can spontaneously emerge and evolve.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37931919</pmid><doi>10.1002/adma.202309999</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8800-1312</orcidid><orcidid>https://orcid.org/0000-0002-0844-5296</orcidid><orcidid>https://orcid.org/0000-0001-9832-5986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-02, Vol.36 (7), p.e2309999-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2886938372 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | competitive reactions Gallium Indium base alloys Intermetallic compounds Liquid metals liquid–solid metal interfaces Morphogenesis morphogenesis processes reaction‐diffusion systems Silver Stability Substrates Turing instability |
title | Turing Instability of Liquid–Solid Metal Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turing%20Instability%20of%20Liquid%E2%80%93Solid%20Metal%20Systems&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xing,%20Zerong&rft.date=2024-02-01&rft.volume=36&rft.issue=7&rft.spage=e2309999&rft.epage=n/a&rft.pages=e2309999-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309999&rft_dat=%3Cproquest_cross%3E2886938372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926357874&rft_id=info:pmid/37931919&rfr_iscdi=true |