Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model

To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of speech, language, and hearing research language, and hearing research, 2023-12, Vol.66 (12), p.4949-4966
Hauptverfasser: Salem, Alexandra C, Gale, Robert C, Fleegle, Mikala, Fergadiotis, Gerasimos, Bedrick, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4966
container_issue 12
container_start_page 4949
container_title Journal of speech, language, and hearing research
container_volume 66
creator Salem, Alexandra C
Gale, Robert C
Fleegle, Mikala
Fergadiotis, Gerasimos
Bedrick, Steven
description To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically "fill in the blank" of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments' predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility. https://doi.org/10.23641/asha.24463543.
doi_str_mv 10.1044/2023_JSLHR-23-00121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886937759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886937759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2151-2c172e47b3583b0d20ab7a9f6a9e8dd2aa773cb0c57e01db1d6bb068a06ac44d3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBCIlsIXICEfuQT8SGLnWJVHi4pA0J6tje2UoMQpdnLg73GhwB52R9qZ2dUgdE7JFSVpes0I4-rhdTl_SRhPCKGMHqAxzTKZFJSww4hJwZKUSzlCJyG8k1g0zY_RiIuCU8rFGOnp0Hct9LXb4IXrrTPW4BX4je3xwljX11Wt47pzuOo8fgYP2zcINQRcO3xTB90NPli8DjsHwMudNHa3GSCCx87Y5hQdVdAEe7afE7S-u13N5sny6X4xmy4TzWhGE6apYDYVJc8kL4lhBEoBRZVDYaUxDEAIrkuiM2EJNSU1eVmSXALJQaep4RN0-eO79d3HYEOv2vifbRpwthuCYlLmBRciKyKV_1C170LwtlJbX7fgPxUlapeu-k9XRfCdblRd7A8MZWvNn-Y3Tv4F_cN2jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886937759</pqid></control><display><type>article</type><title>Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model</title><source>MEDLINE</source><source>EBSCOhost Education Source</source><source>Alma/SFX Local Collection</source><creator>Salem, Alexandra C ; Gale, Robert C ; Fleegle, Mikala ; Fergadiotis, Gerasimos ; Bedrick, Steven</creator><creatorcontrib>Salem, Alexandra C ; Gale, Robert C ; Fleegle, Mikala ; Fergadiotis, Gerasimos ; Bedrick, Steven</creatorcontrib><description>To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically "fill in the blank" of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments' predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility. https://doi.org/10.23641/asha.24463543.</description><identifier>ISSN: 1092-4388</identifier><identifier>ISSN: 1558-9102</identifier><identifier>EISSN: 1558-9102</identifier><identifier>DOI: 10.1044/2023_JSLHR-23-00121</identifier><identifier>PMID: 37931137</identifier><language>eng</language><publisher>United States</publisher><subject>Aphasia - diagnosis ; Humans ; Language ; Linguistics</subject><ispartof>Journal of speech, language, and hearing research, 2023-12, Vol.66 (12), p.4949-4966</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2151-2c172e47b3583b0d20ab7a9f6a9e8dd2aa773cb0c57e01db1d6bb068a06ac44d3</cites><orcidid>0000-0002-0163-9397 ; 0000-0002-0645-8472 ; 0000-0002-3283-3838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37931137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salem, Alexandra C</creatorcontrib><creatorcontrib>Gale, Robert C</creatorcontrib><creatorcontrib>Fleegle, Mikala</creatorcontrib><creatorcontrib>Fergadiotis, Gerasimos</creatorcontrib><creatorcontrib>Bedrick, Steven</creatorcontrib><title>Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model</title><title>Journal of speech, language, and hearing research</title><addtitle>J Speech Lang Hear Res</addtitle><description>To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically "fill in the blank" of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments' predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility. https://doi.org/10.23641/asha.24463543.</description><subject>Aphasia - diagnosis</subject><subject>Humans</subject><subject>Language</subject><subject>Linguistics</subject><issn>1092-4388</issn><issn>1558-9102</issn><issn>1558-9102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUMtOwzAQtBCIlsIXICEfuQT8SGLnWJVHi4pA0J6tje2UoMQpdnLg73GhwB52R9qZ2dUgdE7JFSVpes0I4-rhdTl_SRhPCKGMHqAxzTKZFJSww4hJwZKUSzlCJyG8k1g0zY_RiIuCU8rFGOnp0Hct9LXb4IXrrTPW4BX4je3xwljX11Wt47pzuOo8fgYP2zcINQRcO3xTB90NPli8DjsHwMudNHa3GSCCx87Y5hQdVdAEe7afE7S-u13N5sny6X4xmy4TzWhGE6apYDYVJc8kL4lhBEoBRZVDYaUxDEAIrkuiM2EJNSU1eVmSXALJQaep4RN0-eO79d3HYEOv2vifbRpwthuCYlLmBRciKyKV_1C170LwtlJbX7fgPxUlapeu-k9XRfCdblRd7A8MZWvNn-Y3Tv4F_cN2jA</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Salem, Alexandra C</creator><creator>Gale, Robert C</creator><creator>Fleegle, Mikala</creator><creator>Fergadiotis, Gerasimos</creator><creator>Bedrick, Steven</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0163-9397</orcidid><orcidid>https://orcid.org/0000-0002-0645-8472</orcidid><orcidid>https://orcid.org/0000-0002-3283-3838</orcidid></search><sort><creationdate>20231211</creationdate><title>Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model</title><author>Salem, Alexandra C ; Gale, Robert C ; Fleegle, Mikala ; Fergadiotis, Gerasimos ; Bedrick, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2151-2c172e47b3583b0d20ab7a9f6a9e8dd2aa773cb0c57e01db1d6bb068a06ac44d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aphasia - diagnosis</topic><topic>Humans</topic><topic>Language</topic><topic>Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salem, Alexandra C</creatorcontrib><creatorcontrib>Gale, Robert C</creatorcontrib><creatorcontrib>Fleegle, Mikala</creatorcontrib><creatorcontrib>Fergadiotis, Gerasimos</creatorcontrib><creatorcontrib>Bedrick, Steven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of speech, language, and hearing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem, Alexandra C</au><au>Gale, Robert C</au><au>Fleegle, Mikala</au><au>Fergadiotis, Gerasimos</au><au>Bedrick, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model</atitle><jtitle>Journal of speech, language, and hearing research</jtitle><addtitle>J Speech Lang Hear Res</addtitle><date>2023-12-11</date><risdate>2023</risdate><volume>66</volume><issue>12</issue><spage>4949</spage><epage>4966</epage><pages>4949-4966</pages><issn>1092-4388</issn><issn>1558-9102</issn><eissn>1558-9102</eissn><abstract>To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically "fill in the blank" of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments' predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility. https://doi.org/10.23641/asha.24463543.</abstract><cop>United States</cop><pmid>37931137</pmid><doi>10.1044/2023_JSLHR-23-00121</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0163-9397</orcidid><orcidid>https://orcid.org/0000-0002-0645-8472</orcidid><orcidid>https://orcid.org/0000-0002-3283-3838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1092-4388
ispartof Journal of speech, language, and hearing research, 2023-12, Vol.66 (12), p.4949-4966
issn 1092-4388
1558-9102
1558-9102
language eng
recordid cdi_proquest_miscellaneous_2886937759
source MEDLINE; EBSCOhost Education Source; Alma/SFX Local Collection
subjects Aphasia - diagnosis
Humans
Language
Linguistics
title Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automating%20Intended%20Target%20Identification%20for%20Paraphasias%20in%20Discourse%20Using%20a%20Large%20Language%20Model&rft.jtitle=Journal%20of%20speech,%20language,%20and%20hearing%20research&rft.au=Salem,%20Alexandra%20C&rft.date=2023-12-11&rft.volume=66&rft.issue=12&rft.spage=4949&rft.epage=4966&rft.pages=4949-4966&rft.issn=1092-4388&rft.eissn=1558-9102&rft_id=info:doi/10.1044/2023_JSLHR-23-00121&rft_dat=%3Cproquest_cross%3E2886937759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886937759&rft_id=info:pmid/37931137&rfr_iscdi=true