Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting

Purpose The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-03, Vol.91 (3), p.1075-1086
Hauptverfasser: Filipiak, Patryk, Sajitha, Thajunnisa A., Shepherd, Timothy M., Clarke, Kamri, Goldman, Hannah, Placantonakis, Dimitris G., Zhang, Jiangyang, Chan, Kevin C., Boada, Fernando E., Baete, Steven H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 3
container_start_page 1075
container_title Magnetic resonance in medicine
container_volume 91
creator Filipiak, Patryk
Sajitha, Thajunnisa A.
Shepherd, Timothy M.
Clarke, Kamri
Goldman, Hannah
Placantonakis, Dimitris G.
Zhang, Jiangyang
Chan, Kevin C.
Boada, Fernando E.
Baete, Steven H.
description Purpose The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra‐ and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. Methods Common approaches based on Orientation Distribution Function (ODF) peak finding or statistical inference were compared qualitatively and quantitatively to ODF Fingerprinting (ODF‐FP) for reconstruction of crossing fibers within the optic chiasm using in vivo diffusion MRI (n=18$$ n=18 $$ healthy C57BL/6 mice). Manganese‐Enhanced MRI (MEMRI) was obtained after intravitreal injection of manganese chloride and used as a reference standard for the optic pathway anatomy. Results ODF‐FP outperformed by over 100% all the tested methods in terms of the ratios between the contra‐ and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. Conclusion In this challenging model system, ODF‐Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.
doi_str_mv 10.1002/mrm.29911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886601655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886601655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3201-b52c36e12366fdaa50d62117ecefa28a58dad4657ef4fe96282c25f664e359df3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_AOSS73olqRN2lzK8GOwIYhelyw9cZG1nUnqGPjjjev0zqucwHMezvsidEnJmBLCJrWrx0xKSo_QkHLGEsZldoyGJM9IklKZDdCZ9--EECnz7BQN0lyynDI6RF-zeuPaT6iwA902PrhOB9s2uDVYu9Z727xhY5fgPLYNDivAddt5wO0mWI03Kqy2aufx1oYVbp2FJqj9fmWjyy67_cd0TW81UQdu42wT4nSOToxae7g4vCP0en_3Mn1M5k8Ps-ntPNEpIzRZcqZTAZSlQphKKU4qwSjNQYNRrFC8qFSVCZ6DyQxIwQqmGTdCZJByWZl0hK57b4z60YEPZW29hvVaNRDDlKwohCBUcB7Rmx7dh3dgynhsrdyupKT8KbuMZZf7siN7ddB2yxqqP_K33QhMemBr17D731Qunhe98hvsTY0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886601655</pqid></control><display><type>article</type><title>Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Filipiak, Patryk ; Sajitha, Thajunnisa A. ; Shepherd, Timothy M. ; Clarke, Kamri ; Goldman, Hannah ; Placantonakis, Dimitris G. ; Zhang, Jiangyang ; Chan, Kevin C. ; Boada, Fernando E. ; Baete, Steven H.</creator><creatorcontrib>Filipiak, Patryk ; Sajitha, Thajunnisa A. ; Shepherd, Timothy M. ; Clarke, Kamri ; Goldman, Hannah ; Placantonakis, Dimitris G. ; Zhang, Jiangyang ; Chan, Kevin C. ; Boada, Fernando E. ; Baete, Steven H.</creatorcontrib><description>Purpose The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra‐ and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. Methods Common approaches based on Orientation Distribution Function (ODF) peak finding or statistical inference were compared qualitatively and quantitatively to ODF Fingerprinting (ODF‐FP) for reconstruction of crossing fibers within the optic chiasm using in vivo diffusion MRI (n=18$$ n=18 $$ healthy C57BL/6 mice). Manganese‐Enhanced MRI (MEMRI) was obtained after intravitreal injection of manganese chloride and used as a reference standard for the optic pathway anatomy. Results ODF‐FP outperformed by over 100% all the tested methods in terms of the ratios between the contra‐ and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. Conclusion In this challenging model system, ODF‐Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29911</identifier><identifier>PMID: 37927121</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion Tensor Imaging - methods ; Magnetic Resonance Imaging - methods ; manganese‐enhanced MRI ; Mice ; Mice, Inbred C57BL ; mouse optic pathways ; orientation distribution function fingerprinting ; tractography ; White Matter</subject><ispartof>Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1075-1086</ispartof><rights>2023 International Society for Magnetic Resonance in Medicine</rights><rights>2023 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3201-b52c36e12366fdaa50d62117ecefa28a58dad4657ef4fe96282c25f664e359df3</cites><orcidid>0000-0003-1950-2978 ; 0009-0005-9310-5876 ; 0000-0003-3361-3789 ; 0000-0003-4146-8163 ; 0000-0001-6957-2005 ; 0000-0002-3289-9917 ; 0000-0003-0232-1636 ; 0000-0003-3429-672X ; 0000-0003-4012-7084 ; 0000-0003-3429-4572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37927121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipiak, Patryk</creatorcontrib><creatorcontrib>Sajitha, Thajunnisa A.</creatorcontrib><creatorcontrib>Shepherd, Timothy M.</creatorcontrib><creatorcontrib>Clarke, Kamri</creatorcontrib><creatorcontrib>Goldman, Hannah</creatorcontrib><creatorcontrib>Placantonakis, Dimitris G.</creatorcontrib><creatorcontrib>Zhang, Jiangyang</creatorcontrib><creatorcontrib>Chan, Kevin C.</creatorcontrib><creatorcontrib>Boada, Fernando E.</creatorcontrib><creatorcontrib>Baete, Steven H.</creatorcontrib><title>Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra‐ and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. Methods Common approaches based on Orientation Distribution Function (ODF) peak finding or statistical inference were compared qualitatively and quantitatively to ODF Fingerprinting (ODF‐FP) for reconstruction of crossing fibers within the optic chiasm using in vivo diffusion MRI (n=18$$ n=18 $$ healthy C57BL/6 mice). Manganese‐Enhanced MRI (MEMRI) was obtained after intravitreal injection of manganese chloride and used as a reference standard for the optic pathway anatomy. Results ODF‐FP outperformed by over 100% all the tested methods in terms of the ratios between the contra‐ and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. Conclusion In this challenging model system, ODF‐Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.</description><subject>Animals</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>manganese‐enhanced MRI</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mouse optic pathways</subject><subject>orientation distribution function fingerprinting</subject><subject>tractography</subject><subject>White Matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk4v_AOSS73olqRN2lzK8GOwIYhelyw9cZG1nUnqGPjjjev0zqucwHMezvsidEnJmBLCJrWrx0xKSo_QkHLGEsZldoyGJM9IklKZDdCZ9--EECnz7BQN0lyynDI6RF-zeuPaT6iwA902PrhOB9s2uDVYu9Z727xhY5fgPLYNDivAddt5wO0mWI03Kqy2aufx1oYVbp2FJqj9fmWjyy67_cd0TW81UQdu42wT4nSOToxae7g4vCP0en_3Mn1M5k8Ps-ntPNEpIzRZcqZTAZSlQphKKU4qwSjNQYNRrFC8qFSVCZ6DyQxIwQqmGTdCZJByWZl0hK57b4z60YEPZW29hvVaNRDDlKwohCBUcB7Rmx7dh3dgynhsrdyupKT8KbuMZZf7siN7ddB2yxqqP_K33QhMemBr17D731Qunhe98hvsTY0b</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Filipiak, Patryk</creator><creator>Sajitha, Thajunnisa A.</creator><creator>Shepherd, Timothy M.</creator><creator>Clarke, Kamri</creator><creator>Goldman, Hannah</creator><creator>Placantonakis, Dimitris G.</creator><creator>Zhang, Jiangyang</creator><creator>Chan, Kevin C.</creator><creator>Boada, Fernando E.</creator><creator>Baete, Steven H.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1950-2978</orcidid><orcidid>https://orcid.org/0009-0005-9310-5876</orcidid><orcidid>https://orcid.org/0000-0003-3361-3789</orcidid><orcidid>https://orcid.org/0000-0003-4146-8163</orcidid><orcidid>https://orcid.org/0000-0001-6957-2005</orcidid><orcidid>https://orcid.org/0000-0002-3289-9917</orcidid><orcidid>https://orcid.org/0000-0003-0232-1636</orcidid><orcidid>https://orcid.org/0000-0003-3429-672X</orcidid><orcidid>https://orcid.org/0000-0003-4012-7084</orcidid><orcidid>https://orcid.org/0000-0003-3429-4572</orcidid></search><sort><creationdate>202403</creationdate><title>Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting</title><author>Filipiak, Patryk ; Sajitha, Thajunnisa A. ; Shepherd, Timothy M. ; Clarke, Kamri ; Goldman, Hannah ; Placantonakis, Dimitris G. ; Zhang, Jiangyang ; Chan, Kevin C. ; Boada, Fernando E. ; Baete, Steven H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3201-b52c36e12366fdaa50d62117ecefa28a58dad4657ef4fe96282c25f664e359df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>manganese‐enhanced MRI</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mouse optic pathways</topic><topic>orientation distribution function fingerprinting</topic><topic>tractography</topic><topic>White Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipiak, Patryk</creatorcontrib><creatorcontrib>Sajitha, Thajunnisa A.</creatorcontrib><creatorcontrib>Shepherd, Timothy M.</creatorcontrib><creatorcontrib>Clarke, Kamri</creatorcontrib><creatorcontrib>Goldman, Hannah</creatorcontrib><creatorcontrib>Placantonakis, Dimitris G.</creatorcontrib><creatorcontrib>Zhang, Jiangyang</creatorcontrib><creatorcontrib>Chan, Kevin C.</creatorcontrib><creatorcontrib>Boada, Fernando E.</creatorcontrib><creatorcontrib>Baete, Steven H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipiak, Patryk</au><au>Sajitha, Thajunnisa A.</au><au>Shepherd, Timothy M.</au><au>Clarke, Kamri</au><au>Goldman, Hannah</au><au>Placantonakis, Dimitris G.</au><au>Zhang, Jiangyang</au><au>Chan, Kevin C.</au><au>Boada, Fernando E.</au><au>Baete, Steven H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>91</volume><issue>3</issue><spage>1075</spage><epage>1086</epage><pages>1075-1086</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra‐ and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. Methods Common approaches based on Orientation Distribution Function (ODF) peak finding or statistical inference were compared qualitatively and quantitatively to ODF Fingerprinting (ODF‐FP) for reconstruction of crossing fibers within the optic chiasm using in vivo diffusion MRI (n=18$$ n=18 $$ healthy C57BL/6 mice). Manganese‐Enhanced MRI (MEMRI) was obtained after intravitreal injection of manganese chloride and used as a reference standard for the optic pathway anatomy. Results ODF‐FP outperformed by over 100% all the tested methods in terms of the ratios between the contra‐ and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. Conclusion In this challenging model system, ODF‐Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.</abstract><cop>United States</cop><pmid>37927121</pmid><doi>10.1002/mrm.29911</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1950-2978</orcidid><orcidid>https://orcid.org/0009-0005-9310-5876</orcidid><orcidid>https://orcid.org/0000-0003-3361-3789</orcidid><orcidid>https://orcid.org/0000-0003-4146-8163</orcidid><orcidid>https://orcid.org/0000-0001-6957-2005</orcidid><orcidid>https://orcid.org/0000-0002-3289-9917</orcidid><orcidid>https://orcid.org/0000-0003-0232-1636</orcidid><orcidid>https://orcid.org/0000-0003-3429-672X</orcidid><orcidid>https://orcid.org/0000-0003-4012-7084</orcidid><orcidid>https://orcid.org/0000-0003-3429-4572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-03, Vol.91 (3), p.1075-1086
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2886601655
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging - methods
Magnetic Resonance Imaging - methods
manganese‐enhanced MRI
Mice
Mice, Inbred C57BL
mouse optic pathways
orientation distribution function fingerprinting
tractography
White Matter
title Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20reconstruction%20of%20crossing%20fibers%20in%20the%20mouse%20optic%20pathways%20with%20orientation%20distribution%20function%20fingerprinting&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Filipiak,%20Patryk&rft.date=2024-03&rft.volume=91&rft.issue=3&rft.spage=1075&rft.epage=1086&rft.pages=1075-1086&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29911&rft_dat=%3Cproquest_cross%3E2886601655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886601655&rft_id=info:pmid/37927121&rfr_iscdi=true