A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance

Exploration of novel nonlinear optical (NLO) chalcogenides with high laser‐induced damage thresholds (LIDT) is critical for mid‐infrared (mid‐IR) solid‐state laser applications. High lattice thermal conductivity (κL) is crucial to increasing LIDT yet often neglected in the search for NLO crystals du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-02, Vol.36 (6), p.e2309675-n/a
Hauptverfasser: Wu, Qingchen, Kang, Lei, Lin, Zheshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2309675
container_title Advanced materials (Weinheim)
container_volume 36
creator Wu, Qingchen
Kang, Lei
Lin, Zheshuai
description Exploration of novel nonlinear optical (NLO) chalcogenides with high laser‐induced damage thresholds (LIDT) is critical for mid‐infrared (mid‐IR) solid‐state laser applications. High lattice thermal conductivity (κL) is crucial to increasing LIDT yet often neglected in the search for NLO crystals due to lack of accurate κL data. A machine learning (ML) approach to predict κL for over 6000 chalcogenides is hereby proposed. Combining ML‐generated κL data and first‐principles calculation, a high‐throughput screening route is initiated, and ten new potential mid‐IR NLO chalcogenides with optimal bandgap, NLO coefficients, and thermal conductivity are discovered, in which Li2SiS3 and AlZnGaS4 are highlighted. Big‐data analysis on structural chemistry proves that the chalcogenides having dense and simple lattice structures with low anisotropy, light atoms, and strong covalent bonds are likely to possess higher κL. The four‐coordinated motifs in which central cations show the bond valence sum of +2 to +3 and are from IIIA, IVA, VA, and IIB groups, such as those in diamond‐like defect‐chalcopyrite chalcogenides, are preferred to fulfill the desired structural chemistry conditions for balanced NLO and thermal properties. This work provides not only an efficient strategy but also interpretable research directions in the search for NLO crystals with high thermal conductivity. A high‐throughput screening pipeline combining first‐principle calculation and machine learning is proposed, using lattice thermal conductivity predicted by machine learning for the first time as primary screening criteria to discover mid‐IR nonlinear optical (NLO) chalcogenides. Structural chemistry knowledge to balance thermal conducting and NLO‐related properties is extracted during the procedure. For application, two potential mid‐IR NLO materials with promising performances are identified.
doi_str_mv 10.1002/adma.202309675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886598993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923243381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4275-edbf3abd584f6bb403283840e7b7c35ee31049a9bbcba0c44a6ca4c8547358b63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyhFZ4tJLFscfiX0MW6CVthSJco5sZ7JxldiLnbTaH8F_xtWWInHhNHN45pkZvQi9Lcm6JIR-0N2k15RQRlRVi2doVQpaFpwo8RytiGKiUBWXJ-hVSreEZIhUL9EJqxXNLVmhXw2-0nZwHvAWdPTO7_D3eekOOHh84XYDvhkgTnrEm-C7xc7uzs0H3KTk0gwdngM-d8mGO4h4M-jRhh1410HC924e8Ec9am8zd-n7qGNuvgY_5m064uv97GwWf4PYh7wic6_Ri16PCd481lP04_Onm81Fsb3-crlptoXltBYFdKZn2nRC8r4yhhNGJZOcQG1qywQAKwlXWhljjSaWc11Zza0UvGZCmoqdorOjdx_DzwXS3E75CRjzsRCW1FIpK6GkUiyj7_9Bb8MSfb6upYoyyhmTZabWR8rGkFKEvt1HN-l4aEvSPgTVPgTVPgWVB949ahczQfeE_0kmA-oI3LsRDv_Rtc35VfNX_htqxqDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923243381</pqid></control><display><type>article</type><title>A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Qingchen ; Kang, Lei ; Lin, Zheshuai</creator><creatorcontrib>Wu, Qingchen ; Kang, Lei ; Lin, Zheshuai</creatorcontrib><description>Exploration of novel nonlinear optical (NLO) chalcogenides with high laser‐induced damage thresholds (LIDT) is critical for mid‐infrared (mid‐IR) solid‐state laser applications. High lattice thermal conductivity (κL) is crucial to increasing LIDT yet often neglected in the search for NLO crystals due to lack of accurate κL data. A machine learning (ML) approach to predict κL for over 6000 chalcogenides is hereby proposed. Combining ML‐generated κL data and first‐principles calculation, a high‐throughput screening route is initiated, and ten new potential mid‐IR NLO chalcogenides with optimal bandgap, NLO coefficients, and thermal conductivity are discovered, in which Li2SiS3 and AlZnGaS4 are highlighted. Big‐data analysis on structural chemistry proves that the chalcogenides having dense and simple lattice structures with low anisotropy, light atoms, and strong covalent bonds are likely to possess higher κL. The four‐coordinated motifs in which central cations show the bond valence sum of +2 to +3 and are from IIIA, IVA, VA, and IIB groups, such as those in diamond‐like defect‐chalcopyrite chalcogenides, are preferred to fulfill the desired structural chemistry conditions for balanced NLO and thermal properties. This work provides not only an efficient strategy but also interpretable research directions in the search for NLO crystals with high thermal conductivity. A high‐throughput screening pipeline combining first‐principle calculation and machine learning is proposed, using lattice thermal conductivity predicted by machine learning for the first time as primary screening criteria to discover mid‐IR nonlinear optical (NLO) chalcogenides. Structural chemistry knowledge to balance thermal conducting and NLO‐related properties is extracted during the procedure. For application, two potential mid‐IR NLO materials with promising performances are identified.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309675</identifier><identifier>PMID: 37929600</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; balanced infrared nonlinear optical performance ; Bonding strength ; Chalcogenides ; Chalcopyrite ; Chemical bonds ; Covalent bonds ; Crystal defects ; Data analysis ; Diamonds ; First principles ; Heat conductivity ; Heat transfer ; high‐throughput screening ; Laser applications ; Laser damage ; Machine learning ; Mathematical analysis ; nonlinear optical chalcogenides ; Nonlinear optics ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309675-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4275-edbf3abd584f6bb403283840e7b7c35ee31049a9bbcba0c44a6ca4c8547358b63</citedby><cites>FETCH-LOGICAL-c4275-edbf3abd584f6bb403283840e7b7c35ee31049a9bbcba0c44a6ca4c8547358b63</cites><orcidid>0000-0002-9829-9893 ; 0000-0002-9787-1093 ; 0000-0002-9993-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202309675$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202309675$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37929600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Qingchen</creatorcontrib><creatorcontrib>Kang, Lei</creatorcontrib><creatorcontrib>Lin, Zheshuai</creatorcontrib><title>A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Exploration of novel nonlinear optical (NLO) chalcogenides with high laser‐induced damage thresholds (LIDT) is critical for mid‐infrared (mid‐IR) solid‐state laser applications. High lattice thermal conductivity (κL) is crucial to increasing LIDT yet often neglected in the search for NLO crystals due to lack of accurate κL data. A machine learning (ML) approach to predict κL for over 6000 chalcogenides is hereby proposed. Combining ML‐generated κL data and first‐principles calculation, a high‐throughput screening route is initiated, and ten new potential mid‐IR NLO chalcogenides with optimal bandgap, NLO coefficients, and thermal conductivity are discovered, in which Li2SiS3 and AlZnGaS4 are highlighted. Big‐data analysis on structural chemistry proves that the chalcogenides having dense and simple lattice structures with low anisotropy, light atoms, and strong covalent bonds are likely to possess higher κL. The four‐coordinated motifs in which central cations show the bond valence sum of +2 to +3 and are from IIIA, IVA, VA, and IIB groups, such as those in diamond‐like defect‐chalcopyrite chalcogenides, are preferred to fulfill the desired structural chemistry conditions for balanced NLO and thermal properties. This work provides not only an efficient strategy but also interpretable research directions in the search for NLO crystals with high thermal conductivity. A high‐throughput screening pipeline combining first‐principle calculation and machine learning is proposed, using lattice thermal conductivity predicted by machine learning for the first time as primary screening criteria to discover mid‐IR nonlinear optical (NLO) chalcogenides. Structural chemistry knowledge to balance thermal conducting and NLO‐related properties is extracted during the procedure. For application, two potential mid‐IR NLO materials with promising performances are identified.</description><subject>Anisotropy</subject><subject>balanced infrared nonlinear optical performance</subject><subject>Bonding strength</subject><subject>Chalcogenides</subject><subject>Chalcopyrite</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>Crystal defects</subject><subject>Data analysis</subject><subject>Diamonds</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>high‐throughput screening</subject><subject>Laser applications</subject><subject>Laser damage</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>nonlinear optical chalcogenides</subject><subject>Nonlinear optics</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhyhFZ4tJLFscfiX0MW6CVthSJco5sZ7JxldiLnbTaH8F_xtWWInHhNHN45pkZvQi9Lcm6JIR-0N2k15RQRlRVi2doVQpaFpwo8RytiGKiUBWXJ-hVSreEZIhUL9EJqxXNLVmhXw2-0nZwHvAWdPTO7_D3eekOOHh84XYDvhkgTnrEm-C7xc7uzs0H3KTk0gwdngM-d8mGO4h4M-jRhh1410HC924e8Ec9am8zd-n7qGNuvgY_5m064uv97GwWf4PYh7wic6_Ri16PCd481lP04_Onm81Fsb3-crlptoXltBYFdKZn2nRC8r4yhhNGJZOcQG1qywQAKwlXWhljjSaWc11Zza0UvGZCmoqdorOjdx_DzwXS3E75CRjzsRCW1FIpK6GkUiyj7_9Bb8MSfb6upYoyyhmTZabWR8rGkFKEvt1HN-l4aEvSPgTVPgTVPgWVB949ahczQfeE_0kmA-oI3LsRDv_Rtc35VfNX_htqxqDk</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wu, Qingchen</creator><creator>Kang, Lei</creator><creator>Lin, Zheshuai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9829-9893</orcidid><orcidid>https://orcid.org/0000-0002-9787-1093</orcidid><orcidid>https://orcid.org/0000-0002-9993-6399</orcidid></search><sort><creationdate>20240201</creationdate><title>A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance</title><author>Wu, Qingchen ; Kang, Lei ; Lin, Zheshuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4275-edbf3abd584f6bb403283840e7b7c35ee31049a9bbcba0c44a6ca4c8547358b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>balanced infrared nonlinear optical performance</topic><topic>Bonding strength</topic><topic>Chalcogenides</topic><topic>Chalcopyrite</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>Crystal defects</topic><topic>Data analysis</topic><topic>Diamonds</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>high‐throughput screening</topic><topic>Laser applications</topic><topic>Laser damage</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>nonlinear optical chalcogenides</topic><topic>Nonlinear optics</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qingchen</creatorcontrib><creatorcontrib>Kang, Lei</creatorcontrib><creatorcontrib>Lin, Zheshuai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qingchen</au><au>Kang, Lei</au><au>Lin, Zheshuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>6</issue><spage>e2309675</spage><epage>n/a</epage><pages>e2309675-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Exploration of novel nonlinear optical (NLO) chalcogenides with high laser‐induced damage thresholds (LIDT) is critical for mid‐infrared (mid‐IR) solid‐state laser applications. High lattice thermal conductivity (κL) is crucial to increasing LIDT yet often neglected in the search for NLO crystals due to lack of accurate κL data. A machine learning (ML) approach to predict κL for over 6000 chalcogenides is hereby proposed. Combining ML‐generated κL data and first‐principles calculation, a high‐throughput screening route is initiated, and ten new potential mid‐IR NLO chalcogenides with optimal bandgap, NLO coefficients, and thermal conductivity are discovered, in which Li2SiS3 and AlZnGaS4 are highlighted. Big‐data analysis on structural chemistry proves that the chalcogenides having dense and simple lattice structures with low anisotropy, light atoms, and strong covalent bonds are likely to possess higher κL. The four‐coordinated motifs in which central cations show the bond valence sum of +2 to +3 and are from IIIA, IVA, VA, and IIB groups, such as those in diamond‐like defect‐chalcopyrite chalcogenides, are preferred to fulfill the desired structural chemistry conditions for balanced NLO and thermal properties. This work provides not only an efficient strategy but also interpretable research directions in the search for NLO crystals with high thermal conductivity. A high‐throughput screening pipeline combining first‐principle calculation and machine learning is proposed, using lattice thermal conductivity predicted by machine learning for the first time as primary screening criteria to discover mid‐IR nonlinear optical (NLO) chalcogenides. Structural chemistry knowledge to balance thermal conducting and NLO‐related properties is extracted during the procedure. For application, two potential mid‐IR NLO materials with promising performances are identified.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37929600</pmid><doi>10.1002/adma.202309675</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9829-9893</orcidid><orcidid>https://orcid.org/0000-0002-9787-1093</orcidid><orcidid>https://orcid.org/0000-0002-9993-6399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309675-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2886598993
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
balanced infrared nonlinear optical performance
Bonding strength
Chalcogenides
Chalcopyrite
Chemical bonds
Covalent bonds
Crystal defects
Data analysis
Diamonds
First principles
Heat conductivity
Heat transfer
high‐throughput screening
Laser applications
Laser damage
Machine learning
Mathematical analysis
nonlinear optical chalcogenides
Nonlinear optics
Thermal conductivity
Thermodynamic properties
title A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Study%20on%20High%20Thermal%20Conductivity%20Assisted%20to%20Discover%20Chalcogenides%20with%20Balanced%20Infrared%20Nonlinear%20Optical%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Qingchen&rft.date=2024-02-01&rft.volume=36&rft.issue=6&rft.spage=e2309675&rft.epage=n/a&rft.pages=e2309675-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309675&rft_dat=%3Cproquest_cross%3E2923243381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923243381&rft_id=info:pmid/37929600&rfr_iscdi=true