Thickness-variation-insensitive near-infrared quantum dot LEDs

[Display omitted] In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2023-12, Vol.68 (23), p.2954-2961
Hauptverfasser: Shen, Wan-Shan, Liu, Yang, Grater, Luke, Min Park, So, Wan, Haoyue, Yu, Yan-Jun, Pan, Jia-Lin, Kong, Fan-Cheng, Tian, Qi-Sheng, Zhou, Dong-Ying, Liu, Zeke, Ma, Wanli, Sun, Baoquan, Hoogland, Sjoerd, Wang, Ya-Kun, Liao, Liang-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2961
container_issue 23
container_start_page 2954
container_title Science bulletin
container_volume 68
creator Shen, Wan-Shan
Liu, Yang
Grater, Luke
Min Park, So
Wan, Haoyue
Yu, Yan-Jun
Pan, Jia-Lin
Kong, Fan-Cheng
Tian, Qi-Sheng
Zhou, Dong-Ying
Liu, Zeke
Ma, Wanli
Sun, Baoquan
Hoogland, Sjoerd
Wang, Ya-Kun
Liao, Liang-Sheng
description [Display omitted] In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40–220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10−3 cm2 V−1 s−1; hole mobility: 7.0 × 10−3 cm2 V−1 s−1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40–220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.
doi_str_mv 10.1016/j.scib.2023.10.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886330856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927323007181</els_id><sourcerecordid>2886330856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-742b04e296ebc51c65c625b8ec185a8464ca4f0793906cb6927ba43d1b09032e3</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoTub-AR-kj7605qNNGxBB5vyAgS_zOSTpLWau6Za0A_97Uzb36NO9HM453PtD6IbgjGDC79dZMFZnFFMWhQyT6gxdUSyKVNCKnJ_2kk3QLIQ1xpjkgua4vEQTVgoiSMGv0OPqy5pvByGke-Wt6m3nUusCuGB7u4fEgfJRaLzyUCe7Qbl-aJO665Pl4jlco4tGbQLMjnOKPl8Wq_lbuvx4fZ8_LVPDCt6nZU41zoEKDtoUxPDCcFroCgypClXlPDcqb3ApmMDcaB7P1ipnNdFYYEaBTdHdoXfru90AoZetDQY2G-WgG4KkVcUZw1XBo5UerMZ3IXho5NbbVvkfSbAc0cm1HNHJEd2oRXQxdHvsH3QL9SnyByoaHg4GiF_uLfixA5yB2nowvaw7-1__L__PfmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886330856</pqid></control><display><type>article</type><title>Thickness-variation-insensitive near-infrared quantum dot LEDs</title><source>Alma/SFX Local Collection</source><creator>Shen, Wan-Shan ; Liu, Yang ; Grater, Luke ; Min Park, So ; Wan, Haoyue ; Yu, Yan-Jun ; Pan, Jia-Lin ; Kong, Fan-Cheng ; Tian, Qi-Sheng ; Zhou, Dong-Ying ; Liu, Zeke ; Ma, Wanli ; Sun, Baoquan ; Hoogland, Sjoerd ; Wang, Ya-Kun ; Liao, Liang-Sheng</creator><creatorcontrib>Shen, Wan-Shan ; Liu, Yang ; Grater, Luke ; Min Park, So ; Wan, Haoyue ; Yu, Yan-Jun ; Pan, Jia-Lin ; Kong, Fan-Cheng ; Tian, Qi-Sheng ; Zhou, Dong-Ying ; Liu, Zeke ; Ma, Wanli ; Sun, Baoquan ; Hoogland, Sjoerd ; Wang, Ya-Kun ; Liao, Liang-Sheng</creatorcontrib><description>[Display omitted] In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40–220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10−3 cm2 V−1 s−1; hole mobility: 7.0 × 10−3 cm2 V−1 s−1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40–220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2023.10.018</identifier><identifier>PMID: 37919156</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Electroluminescence ; Light-emitting diodes ; Near-infrared ; Quantum dots</subject><ispartof>Science bulletin, 2023-12, Vol.68 (23), p.2954-2961</ispartof><rights>2023 Science China Press</rights><rights>Copyright © 2023 Science China Press. Published by Elsevier B.V. and Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-742b04e296ebc51c65c625b8ec185a8464ca4f0793906cb6927ba43d1b09032e3</citedby><cites>FETCH-LOGICAL-c356t-742b04e296ebc51c65c625b8ec185a8464ca4f0793906cb6927ba43d1b09032e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37919156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Wan-Shan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Grater, Luke</creatorcontrib><creatorcontrib>Min Park, So</creatorcontrib><creatorcontrib>Wan, Haoyue</creatorcontrib><creatorcontrib>Yu, Yan-Jun</creatorcontrib><creatorcontrib>Pan, Jia-Lin</creatorcontrib><creatorcontrib>Kong, Fan-Cheng</creatorcontrib><creatorcontrib>Tian, Qi-Sheng</creatorcontrib><creatorcontrib>Zhou, Dong-Ying</creatorcontrib><creatorcontrib>Liu, Zeke</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Sun, Baoquan</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Wang, Ya-Kun</creatorcontrib><creatorcontrib>Liao, Liang-Sheng</creatorcontrib><title>Thickness-variation-insensitive near-infrared quantum dot LEDs</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>[Display omitted] In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40–220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10−3 cm2 V−1 s−1; hole mobility: 7.0 × 10−3 cm2 V−1 s−1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40–220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.</description><subject>Electroluminescence</subject><subject>Light-emitting diodes</subject><subject>Near-infrared</subject><subject>Quantum dots</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoTub-AR-kj7605qNNGxBB5vyAgS_zOSTpLWau6Za0A_97Uzb36NO9HM453PtD6IbgjGDC79dZMFZnFFMWhQyT6gxdUSyKVNCKnJ_2kk3QLIQ1xpjkgua4vEQTVgoiSMGv0OPqy5pvByGke-Wt6m3nUusCuGB7u4fEgfJRaLzyUCe7Qbl-aJO665Pl4jlco4tGbQLMjnOKPl8Wq_lbuvx4fZ8_LVPDCt6nZU41zoEKDtoUxPDCcFroCgypClXlPDcqb3ApmMDcaB7P1ipnNdFYYEaBTdHdoXfru90AoZetDQY2G-WgG4KkVcUZw1XBo5UerMZ3IXho5NbbVvkfSbAc0cm1HNHJEd2oRXQxdHvsH3QL9SnyByoaHg4GiF_uLfixA5yB2nowvaw7-1__L__PfmE</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Shen, Wan-Shan</creator><creator>Liu, Yang</creator><creator>Grater, Luke</creator><creator>Min Park, So</creator><creator>Wan, Haoyue</creator><creator>Yu, Yan-Jun</creator><creator>Pan, Jia-Lin</creator><creator>Kong, Fan-Cheng</creator><creator>Tian, Qi-Sheng</creator><creator>Zhou, Dong-Ying</creator><creator>Liu, Zeke</creator><creator>Ma, Wanli</creator><creator>Sun, Baoquan</creator><creator>Hoogland, Sjoerd</creator><creator>Wang, Ya-Kun</creator><creator>Liao, Liang-Sheng</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231215</creationdate><title>Thickness-variation-insensitive near-infrared quantum dot LEDs</title><author>Shen, Wan-Shan ; Liu, Yang ; Grater, Luke ; Min Park, So ; Wan, Haoyue ; Yu, Yan-Jun ; Pan, Jia-Lin ; Kong, Fan-Cheng ; Tian, Qi-Sheng ; Zhou, Dong-Ying ; Liu, Zeke ; Ma, Wanli ; Sun, Baoquan ; Hoogland, Sjoerd ; Wang, Ya-Kun ; Liao, Liang-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-742b04e296ebc51c65c625b8ec185a8464ca4f0793906cb6927ba43d1b09032e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electroluminescence</topic><topic>Light-emitting diodes</topic><topic>Near-infrared</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wan-Shan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Grater, Luke</creatorcontrib><creatorcontrib>Min Park, So</creatorcontrib><creatorcontrib>Wan, Haoyue</creatorcontrib><creatorcontrib>Yu, Yan-Jun</creatorcontrib><creatorcontrib>Pan, Jia-Lin</creatorcontrib><creatorcontrib>Kong, Fan-Cheng</creatorcontrib><creatorcontrib>Tian, Qi-Sheng</creatorcontrib><creatorcontrib>Zhou, Dong-Ying</creatorcontrib><creatorcontrib>Liu, Zeke</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Sun, Baoquan</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Wang, Ya-Kun</creatorcontrib><creatorcontrib>Liao, Liang-Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wan-Shan</au><au>Liu, Yang</au><au>Grater, Luke</au><au>Min Park, So</au><au>Wan, Haoyue</au><au>Yu, Yan-Jun</au><au>Pan, Jia-Lin</au><au>Kong, Fan-Cheng</au><au>Tian, Qi-Sheng</au><au>Zhou, Dong-Ying</au><au>Liu, Zeke</au><au>Ma, Wanli</au><au>Sun, Baoquan</au><au>Hoogland, Sjoerd</au><au>Wang, Ya-Kun</au><au>Liao, Liang-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-variation-insensitive near-infrared quantum dot LEDs</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2023-12-15</date><risdate>2023</risdate><volume>68</volume><issue>23</issue><spage>2954</spage><epage>2961</epage><pages>2954-2961</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>[Display omitted] In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40–220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10−3 cm2 V−1 s−1; hole mobility: 7.0 × 10−3 cm2 V−1 s−1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40–220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37919156</pmid><doi>10.1016/j.scib.2023.10.018</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof Science bulletin, 2023-12, Vol.68 (23), p.2954-2961
issn 2095-9273
2095-9281
language eng
recordid cdi_proquest_miscellaneous_2886330856
source Alma/SFX Local Collection
subjects Electroluminescence
Light-emitting diodes
Near-infrared
Quantum dots
title Thickness-variation-insensitive near-infrared quantum dot LEDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-variation-insensitive%20near-infrared%20quantum%20dot%20LEDs&rft.jtitle=Science%20bulletin&rft.au=Shen,%20Wan-Shan&rft.date=2023-12-15&rft.volume=68&rft.issue=23&rft.spage=2954&rft.epage=2961&rft.pages=2954-2961&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2023.10.018&rft_dat=%3Cproquest_cross%3E2886330856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886330856&rft_id=info:pmid/37919156&rft_els_id=S2095927323007181&rfr_iscdi=true