Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis

Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2023-12, Vol.20 (12), p.2021-2033
Hauptverfasser: Yuan, Lei, Xie, Shaofang, Bai, Huiru, Liu, Xiaoqin, Cai, Pei, Lu, Jing, Wang, Chunhui, Lin, Zuobao, Li, Shuying, Guo, Yajing, Cai, Shang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2033
container_issue 12
container_start_page 2021
container_title Nature methods
container_volume 20
creator Yuan, Lei
Xie, Shaofang
Bai, Huiru
Liu, Xiaoqin
Cai, Pei
Lu, Jing
Wang, Chunhui
Lin, Zuobao
Li, Shuying
Guo, Yajing
Cai, Shang
description Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes. A dynamic, hormone-responsive mammary gland organoid system that can mimic complex physiological processes in vitro.
doi_str_mv 10.1038/s41592-023-02039-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2886330133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886330133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ed5d59aa051701fddc03c57e480b495e0e081366cd3b7a7b12ec2b417cf790d63</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoyMe2f6CHIsilFycjy1pJx7CkbWAhEJJTDkKW5K0WW9pKdsD_Ptps0kIOPYgRzDPvDA9CXwlcEqDiKjeEybqCmpYHVFbzETojrBEVJ8A-vf9BklN0nvMWgNKmZifolHJJZFOTM_R070wMeUyTGX0MOHbYzkEP3uBBD4NOMx588HjT62CxD_jZjyniLiYcYhp0j3e_5-xjHzcz3iMxmLhxwWWfP6PjTvfZfXmrC_T44-Zh9ata3_28XV2vK0M5GytnmWVSa2CEA-msNUAN464R0DaSOXAgCF0ujaUt17wltTN12xBuOi7BLukCfT_k7lL8M7k8qsFn4_pysotTVrUQS0qBUFrQiw_oNk4plOsKJSURgos9VR8ok2LOyXVql_zehSKg9urVQb0q6tWrejWXoW9v0VM7OPt35N11AegByKUVNi792_2f2BcVjZAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899188783</pqid></control><display><type>article</type><title>Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis</title><source>Nature</source><source>SpringerLink_现刊</source><creator>Yuan, Lei ; Xie, Shaofang ; Bai, Huiru ; Liu, Xiaoqin ; Cai, Pei ; Lu, Jing ; Wang, Chunhui ; Lin, Zuobao ; Li, Shuying ; Guo, Yajing ; Cai, Shang</creator><creatorcontrib>Yuan, Lei ; Xie, Shaofang ; Bai, Huiru ; Liu, Xiaoqin ; Cai, Pei ; Lu, Jing ; Wang, Chunhui ; Lin, Zuobao ; Li, Shuying ; Guo, Yajing ; Cai, Shang</creatorcontrib><description>Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes. A dynamic, hormone-responsive mammary gland organoid system that can mimic complex physiological processes in vitro.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02039-y</identifier><identifier>PMID: 37919421</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/136/142 ; 631/136/1660 ; 631/136/2060 ; 631/1647/767 ; 631/532/2064 ; Bioinformatics ; Biological activity ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cell culture ; Estrus cycle ; Extracellular matrix ; Heterogeneity ; In vivo methods and tests ; Lactation ; Life Sciences ; Mammary gland ; Mammary glands ; Organoids ; Physiology ; Proteomics ; Puberty ; Reconstruction ; Stem cells ; Tumorigenesis</subject><ispartof>Nature methods, 2023-12, Vol.20 (12), p.2021-2033</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ed5d59aa051701fddc03c57e480b495e0e081366cd3b7a7b12ec2b417cf790d63</citedby><cites>FETCH-LOGICAL-c375t-ed5d59aa051701fddc03c57e480b495e0e081366cd3b7a7b12ec2b417cf790d63</cites><orcidid>0000-0003-0630-7719 ; 0009-0006-1378-7000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02039-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02039-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37919421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Lei</creatorcontrib><creatorcontrib>Xie, Shaofang</creatorcontrib><creatorcontrib>Bai, Huiru</creatorcontrib><creatorcontrib>Liu, Xiaoqin</creatorcontrib><creatorcontrib>Cai, Pei</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Lin, Zuobao</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Guo, Yajing</creatorcontrib><creatorcontrib>Cai, Shang</creatorcontrib><title>Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes. A dynamic, hormone-responsive mammary gland organoid system that can mimic complex physiological processes in vitro.</description><subject>631/136/142</subject><subject>631/136/1660</subject><subject>631/136/2060</subject><subject>631/1647/767</subject><subject>631/532/2064</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cell culture</subject><subject>Estrus cycle</subject><subject>Extracellular matrix</subject><subject>Heterogeneity</subject><subject>In vivo methods and tests</subject><subject>Lactation</subject><subject>Life Sciences</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Organoids</subject><subject>Physiology</subject><subject>Proteomics</subject><subject>Puberty</subject><subject>Reconstruction</subject><subject>Stem cells</subject><subject>Tumorigenesis</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1r3DAQhkVoyMe2f6CHIsilFycjy1pJx7CkbWAhEJJTDkKW5K0WW9pKdsD_Ptps0kIOPYgRzDPvDA9CXwlcEqDiKjeEybqCmpYHVFbzETojrBEVJ8A-vf9BklN0nvMWgNKmZifolHJJZFOTM_R070wMeUyTGX0MOHbYzkEP3uBBD4NOMx588HjT62CxD_jZjyniLiYcYhp0j3e_5-xjHzcz3iMxmLhxwWWfP6PjTvfZfXmrC_T44-Zh9ata3_28XV2vK0M5GytnmWVSa2CEA-msNUAN464R0DaSOXAgCF0ujaUt17wltTN12xBuOi7BLukCfT_k7lL8M7k8qsFn4_pysotTVrUQS0qBUFrQiw_oNk4plOsKJSURgos9VR8ok2LOyXVql_zehSKg9urVQb0q6tWrejWXoW9v0VM7OPt35N11AegByKUVNi792_2f2BcVjZAP</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yuan, Lei</creator><creator>Xie, Shaofang</creator><creator>Bai, Huiru</creator><creator>Liu, Xiaoqin</creator><creator>Cai, Pei</creator><creator>Lu, Jing</creator><creator>Wang, Chunhui</creator><creator>Lin, Zuobao</creator><creator>Li, Shuying</creator><creator>Guo, Yajing</creator><creator>Cai, Shang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0630-7719</orcidid><orcidid>https://orcid.org/0009-0006-1378-7000</orcidid></search><sort><creationdate>20231201</creationdate><title>Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis</title><author>Yuan, Lei ; Xie, Shaofang ; Bai, Huiru ; Liu, Xiaoqin ; Cai, Pei ; Lu, Jing ; Wang, Chunhui ; Lin, Zuobao ; Li, Shuying ; Guo, Yajing ; Cai, Shang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ed5d59aa051701fddc03c57e480b495e0e081366cd3b7a7b12ec2b417cf790d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/136/142</topic><topic>631/136/1660</topic><topic>631/136/2060</topic><topic>631/1647/767</topic><topic>631/532/2064</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cell culture</topic><topic>Estrus cycle</topic><topic>Extracellular matrix</topic><topic>Heterogeneity</topic><topic>In vivo methods and tests</topic><topic>Lactation</topic><topic>Life Sciences</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Organoids</topic><topic>Physiology</topic><topic>Proteomics</topic><topic>Puberty</topic><topic>Reconstruction</topic><topic>Stem cells</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Lei</creatorcontrib><creatorcontrib>Xie, Shaofang</creatorcontrib><creatorcontrib>Bai, Huiru</creatorcontrib><creatorcontrib>Liu, Xiaoqin</creatorcontrib><creatorcontrib>Cai, Pei</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Lin, Zuobao</creatorcontrib><creatorcontrib>Li, Shuying</creatorcontrib><creatorcontrib>Guo, Yajing</creatorcontrib><creatorcontrib>Cai, Shang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Lei</au><au>Xie, Shaofang</au><au>Bai, Huiru</au><au>Liu, Xiaoqin</au><au>Cai, Pei</au><au>Lu, Jing</au><au>Wang, Chunhui</au><au>Lin, Zuobao</au><au>Li, Shuying</au><au>Guo, Yajing</au><au>Cai, Shang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>20</volume><issue>12</issue><spage>2021</spage><epage>2033</epage><pages>2021-2033</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes. A dynamic, hormone-responsive mammary gland organoid system that can mimic complex physiological processes in vitro.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37919421</pmid><doi>10.1038/s41592-023-02039-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0630-7719</orcidid><orcidid>https://orcid.org/0009-0006-1378-7000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2023-12, Vol.20 (12), p.2021-2033
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2886330133
source Nature; SpringerLink_现刊
subjects 631/136/142
631/136/1660
631/136/2060
631/1647/767
631/532/2064
Bioinformatics
Biological activity
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cell culture
Estrus cycle
Extracellular matrix
Heterogeneity
In vivo methods and tests
Lactation
Life Sciences
Mammary gland
Mammary glands
Organoids
Physiology
Proteomics
Puberty
Reconstruction
Stem cells
Tumorigenesis
title Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20dynamic%20mammary%20mini%20gland%20in%20vitro%20for%20normal%20physiology%20and%20oncogenesis&rft.jtitle=Nature%20methods&rft.au=Yuan,%20Lei&rft.date=2023-12-01&rft.volume=20&rft.issue=12&rft.spage=2021&rft.epage=2033&rft.pages=2021-2033&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02039-y&rft_dat=%3Cproquest_cross%3E2886330133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899188783&rft_id=info:pmid/37919421&rfr_iscdi=true