Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer

To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2024-03, Vol.31 (3), p.800-811
Hauptverfasser: Zhang, Biyuan, Yu, Yimiao, Mao, Yan, Wang, Haiji, Lv, Meng, Su, Xiaohui, Wang, Yongmei, Li, Zhenghao, Zhang, Zaixian, Bian, Tiantian, Wang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 3
container_start_page 800
container_title Academic radiology
container_volume 31
creator Zhang, Biyuan
Yu, Yimiao
Mao, Yan
Wang, Haiji
Lv, Meng
Su, Xiaohui
Wang, Yongmei
Li, Zhenghao
Zhang, Zaixian
Bian, Tiantian
Wang, Qi
description To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients. The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98–1.00) and 0.83 (95% CI, 0.73–0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62–0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99–1.00). In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.
doi_str_mv 10.1016/j.acra.2023.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2885541691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107663322300538X</els_id><sourcerecordid>2885541691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-9e74db64dfeade88d66111889c22d891636243561eb430e0a03c36c6ede215643</originalsourceid><addsrcrecordid>eNp9kEtPGzEUha2qqDzKH2CBvOxmgl_xeCQ2ISltpAAVj7Xl2HciR4k92JMI_n09CnTZ1b26Oufong-hC0pGlFB5tR4Zm8yIEcbLYUSI-IJOqKpVJYiQX8tOallJztkxOs15TQgdS8W_oWNeN1RIVp-gOIM9bGK3hdDj2OK7x3l1YzI4PAPo8AJMCj6s8JNfBdPvEuA2JvwngfO29zEMnsmb32xMesePkLsYMuBJ20PC95Mp9gHfJDC5x1MTLKTv6Kg1mwznH_MMvdz-fJ7-rhYPv-bTyaKynNR91UAt3FIK14JxoJSTklKqVGMZc6qhkksm-FhSWApOgBjCLZdWggNWSgp-hn4ccrsUX3eQe7312UL5M0DcZc2UGo8FlQ0tUnaQ2hRzTtDqLvlt6aMp0QNovdYDaD2AHm4FdDFdfuTvlltw_yyfZIvg-iCA0nLvIelsPRQEziewvXbR_y__LwMtjaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885541691</pqid></control><display><type>article</type><title>Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Biyuan ; Yu, Yimiao ; Mao, Yan ; Wang, Haiji ; Lv, Meng ; Su, Xiaohui ; Wang, Yongmei ; Li, Zhenghao ; Zhang, Zaixian ; Bian, Tiantian ; Wang, Qi</creator><creatorcontrib>Zhang, Biyuan ; Yu, Yimiao ; Mao, Yan ; Wang, Haiji ; Lv, Meng ; Su, Xiaohui ; Wang, Yongmei ; Li, Zhenghao ; Zhang, Zaixian ; Bian, Tiantian ; Wang, Qi</creatorcontrib><description>To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients. The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98–1.00) and 0.83 (95% CI, 0.73–0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62–0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99–1.00). In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2023.10.004</identifier><identifier>PMID: 37914627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Breast malignancy ; Deep learning ; Machine learning ; Magnetic resonance imaging</subject><ispartof>Academic radiology, 2024-03, Vol.31 (3), p.800-811</ispartof><rights>2024 The Association of University Radiologists</rights><rights>Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-9e74db64dfeade88d66111889c22d891636243561eb430e0a03c36c6ede215643</cites><orcidid>0009-0008-3348-8117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acra.2023.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37914627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Biyuan</creatorcontrib><creatorcontrib>Yu, Yimiao</creatorcontrib><creatorcontrib>Mao, Yan</creatorcontrib><creatorcontrib>Wang, Haiji</creatorcontrib><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Su, Xiaohui</creatorcontrib><creatorcontrib>Wang, Yongmei</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Zhang, Zaixian</creatorcontrib><creatorcontrib>Bian, Tiantian</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><title>Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients. The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98–1.00) and 0.83 (95% CI, 0.73–0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62–0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99–1.00). In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.</description><subject>Breast malignancy</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPGzEUha2qqDzKH2CBvOxmgl_xeCQ2ISltpAAVj7Xl2HciR4k92JMI_n09CnTZ1b26Oufong-hC0pGlFB5tR4Zm8yIEcbLYUSI-IJOqKpVJYiQX8tOallJztkxOs15TQgdS8W_oWNeN1RIVp-gOIM9bGK3hdDj2OK7x3l1YzI4PAPo8AJMCj6s8JNfBdPvEuA2JvwngfO29zEMnsmb32xMesePkLsYMuBJ20PC95Mp9gHfJDC5x1MTLKTv6Kg1mwznH_MMvdz-fJ7-rhYPv-bTyaKynNR91UAt3FIK14JxoJSTklKqVGMZc6qhkksm-FhSWApOgBjCLZdWggNWSgp-hn4ccrsUX3eQe7312UL5M0DcZc2UGo8FlQ0tUnaQ2hRzTtDqLvlt6aMp0QNovdYDaD2AHm4FdDFdfuTvlltw_yyfZIvg-iCA0nLvIelsPRQEziewvXbR_y__LwMtjaU</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Zhang, Biyuan</creator><creator>Yu, Yimiao</creator><creator>Mao, Yan</creator><creator>Wang, Haiji</creator><creator>Lv, Meng</creator><creator>Su, Xiaohui</creator><creator>Wang, Yongmei</creator><creator>Li, Zhenghao</creator><creator>Zhang, Zaixian</creator><creator>Bian, Tiantian</creator><creator>Wang, Qi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-3348-8117</orcidid></search><sort><creationdate>202403</creationdate><title>Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer</title><author>Zhang, Biyuan ; Yu, Yimiao ; Mao, Yan ; Wang, Haiji ; Lv, Meng ; Su, Xiaohui ; Wang, Yongmei ; Li, Zhenghao ; Zhang, Zaixian ; Bian, Tiantian ; Wang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-9e74db64dfeade88d66111889c22d891636243561eb430e0a03c36c6ede215643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Breast malignancy</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Biyuan</creatorcontrib><creatorcontrib>Yu, Yimiao</creatorcontrib><creatorcontrib>Mao, Yan</creatorcontrib><creatorcontrib>Wang, Haiji</creatorcontrib><creatorcontrib>Lv, Meng</creatorcontrib><creatorcontrib>Su, Xiaohui</creatorcontrib><creatorcontrib>Wang, Yongmei</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Zhang, Zaixian</creatorcontrib><creatorcontrib>Bian, Tiantian</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Biyuan</au><au>Yu, Yimiao</au><au>Mao, Yan</au><au>Wang, Haiji</au><au>Lv, Meng</au><au>Su, Xiaohui</au><au>Wang, Yongmei</au><au>Li, Zhenghao</au><au>Zhang, Zaixian</au><au>Bian, Tiantian</au><au>Wang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2024-03</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><spage>800</spage><epage>811</epage><pages>800-811</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients. The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98–1.00) and 0.83 (95% CI, 0.73–0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62–0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99–1.00). In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37914627</pmid><doi>10.1016/j.acra.2023.10.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0008-3348-8117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2024-03, Vol.31 (3), p.800-811
issn 1076-6332
1878-4046
language eng
recordid cdi_proquest_miscellaneous_2885541691
source Elsevier ScienceDirect Journals
subjects Breast malignancy
Deep learning
Machine learning
Magnetic resonance imaging
title Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20MRI-Based%20Deep%20Learning%20Signature%20for%20Prediction%20of%20Axillary%20Response%20After%20NAC%20in%20Breast%20Cancer&rft.jtitle=Academic%20radiology&rft.au=Zhang,%20Biyuan&rft.date=2024-03&rft.volume=31&rft.issue=3&rft.spage=800&rft.epage=811&rft.pages=800-811&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2023.10.004&rft_dat=%3Cproquest_cross%3E2885541691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885541691&rft_id=info:pmid/37914627&rft_els_id=S107663322300538X&rfr_iscdi=true