EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq

Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2023-12, Vol.18 (12), p.3881-3917
Hauptverfasser: Sarel-Gallily, Roni, Keshet, Gal, Kinreich, Shay, Haim-Abadi, Guy, Benvenisty, Nissim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3917
container_issue 12
container_start_page 3881
container_title Nature protocols
container_volume 18
creator Sarel-Gallily, Roni
Keshet, Gal
Kinreich, Shay
Haim-Abadi, Guy
Benvenisty, Nissim
description Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1–4 d. Key points This protocol provides a step-by-step procedure to infer the presence of epigenetic aberrations in human pluripotent stem cells from RNA sequencing data, specifically focusing on the identification of imprinting and X-inactivation status. The pipeline provides a simple and easy-to-use methodology for the reliable identification of gene- and locus-specific loss-of-imprinting events as well as the accurate discrimination among different X-inactivation statuses. The authors describe an easy-to-follow bioinformatic pipeline, called EpiTyping, for the identification of abnormal biallelic expression of imprinted genes and the analysis of the X-chromosome inactivation state from RNA sequencing data obtained from human pluripotent stem cells.
doi_str_mv 10.1038/s41596-023-00898-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2885541504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898165114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ea29e2609d1f1dea138204800a910abcd6e7cf30a6ddec7acf68dd463ddc01563</originalsourceid><addsrcrecordid>eNp9kcFKJDEQhhtxQZ3dF_AU8OIlWul0pxNvIuoKorDMwt5CJqkeI92dNukR5u1NzywIHjxVHb6voP6_KE4ZXDDg8jJVrFaCQskpgFSS1gfFMWtqoGWj1OFur2jJpDoqTlJ6BagaLprjYrwd_XI7-mF9Rcxgum3yiYSW4OjXOODkLTErjNFMPgyJ-IGMJuIwmY74fox-mLKaTUf-UfsSQx9S6DFzxk7-fWeRTZqZP0_XNOHbz-JHa7qEv_7PRfH37nZ585s-Pt8_3Fw_UsuBTxRNqbAUoBxrmUPDuCyhkgBGMTAr6wQ2tuVghHNoG2NbIZ2rBHfOAqsFXxTn-7tjDG8bTJPufbLYdWbAsEm6lLKuc2pQZfTsC_oaNjGHMVNKMlEzNlPlnrIxpBSx1fn93sStZqDnEvS-BJ1L0LsSdJ0lvpfSnNUa4-fpb6wP_P-MGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898165114</pqid></control><display><type>article</type><title>EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Sarel-Gallily, Roni ; Keshet, Gal ; Kinreich, Shay ; Haim-Abadi, Guy ; Benvenisty, Nissim</creator><creatorcontrib>Sarel-Gallily, Roni ; Keshet, Gal ; Kinreich, Shay ; Haim-Abadi, Guy ; Benvenisty, Nissim</creatorcontrib><description>Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1–4 d. Key points This protocol provides a step-by-step procedure to infer the presence of epigenetic aberrations in human pluripotent stem cells from RNA sequencing data, specifically focusing on the identification of imprinting and X-inactivation status. The pipeline provides a simple and easy-to-use methodology for the reliable identification of gene- and locus-specific loss-of-imprinting events as well as the accurate discrimination among different X-inactivation statuses. The authors describe an easy-to-follow bioinformatic pipeline, called EpiTyping, for the identification of abnormal biallelic expression of imprinted genes and the analysis of the X-chromosome inactivation state from RNA sequencing data obtained from human pluripotent stem cells.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-023-00898-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/2064/2117 ; 631/532/2064/2158 ; Aberration ; Analytical Chemistry ; Biological Techniques ; Biomedical and Life Sciences ; Cell culture ; Chromosomes ; Computational Biology/Bioinformatics ; Deactivation ; Epigenetics ; Gene expression ; Gene sequencing ; Genomic imprinting ; Inactivation ; Life Sciences ; Microarrays ; Organic Chemistry ; Pipeline design ; Pluripotency ; Protocol ; Regenerative medicine ; Ribonucleic acid ; RNA ; Stem cells ; X chromosomes ; X-chromosome inactivation</subject><ispartof>Nature protocols, 2023-12, Vol.18 (12), p.3881-3917</ispartof><rights>Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-ea29e2609d1f1dea138204800a910abcd6e7cf30a6ddec7acf68dd463ddc01563</cites><orcidid>0000-0001-8234-2685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sarel-Gallily, Roni</creatorcontrib><creatorcontrib>Keshet, Gal</creatorcontrib><creatorcontrib>Kinreich, Shay</creatorcontrib><creatorcontrib>Haim-Abadi, Guy</creatorcontrib><creatorcontrib>Benvenisty, Nissim</creatorcontrib><title>EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><description>Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1–4 d. Key points This protocol provides a step-by-step procedure to infer the presence of epigenetic aberrations in human pluripotent stem cells from RNA sequencing data, specifically focusing on the identification of imprinting and X-inactivation status. The pipeline provides a simple and easy-to-use methodology for the reliable identification of gene- and locus-specific loss-of-imprinting events as well as the accurate discrimination among different X-inactivation statuses. The authors describe an easy-to-follow bioinformatic pipeline, called EpiTyping, for the identification of abnormal biallelic expression of imprinted genes and the analysis of the X-chromosome inactivation state from RNA sequencing data obtained from human pluripotent stem cells.</description><subject>631/532/2064/2117</subject><subject>631/532/2064/2158</subject><subject>Aberration</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Cell culture</subject><subject>Chromosomes</subject><subject>Computational Biology/Bioinformatics</subject><subject>Deactivation</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomic imprinting</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Microarrays</subject><subject>Organic Chemistry</subject><subject>Pipeline design</subject><subject>Pluripotency</subject><subject>Protocol</subject><subject>Regenerative medicine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stem cells</subject><subject>X chromosomes</subject><subject>X-chromosome inactivation</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFKJDEQhhtxQZ3dF_AU8OIlWul0pxNvIuoKorDMwt5CJqkeI92dNukR5u1NzywIHjxVHb6voP6_KE4ZXDDg8jJVrFaCQskpgFSS1gfFMWtqoGWj1OFur2jJpDoqTlJ6BagaLprjYrwd_XI7-mF9Rcxgum3yiYSW4OjXOODkLTErjNFMPgyJ-IGMJuIwmY74fox-mLKaTUf-UfsSQx9S6DFzxk7-fWeRTZqZP0_XNOHbz-JHa7qEv_7PRfH37nZ585s-Pt8_3Fw_UsuBTxRNqbAUoBxrmUPDuCyhkgBGMTAr6wQ2tuVghHNoG2NbIZ2rBHfOAqsFXxTn-7tjDG8bTJPufbLYdWbAsEm6lLKuc2pQZfTsC_oaNjGHMVNKMlEzNlPlnrIxpBSx1fn93sStZqDnEvS-BJ1L0LsSdJ0lvpfSnNUa4-fpb6wP_P-MGQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Sarel-Gallily, Roni</creator><creator>Keshet, Gal</creator><creator>Kinreich, Shay</creator><creator>Haim-Abadi, Guy</creator><creator>Benvenisty, Nissim</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8234-2685</orcidid></search><sort><creationdate>20231201</creationdate><title>EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq</title><author>Sarel-Gallily, Roni ; Keshet, Gal ; Kinreich, Shay ; Haim-Abadi, Guy ; Benvenisty, Nissim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ea29e2609d1f1dea138204800a910abcd6e7cf30a6ddec7acf68dd463ddc01563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/532/2064/2117</topic><topic>631/532/2064/2158</topic><topic>Aberration</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Cell culture</topic><topic>Chromosomes</topic><topic>Computational Biology/Bioinformatics</topic><topic>Deactivation</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomic imprinting</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Microarrays</topic><topic>Organic Chemistry</topic><topic>Pipeline design</topic><topic>Pluripotency</topic><topic>Protocol</topic><topic>Regenerative medicine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stem cells</topic><topic>X chromosomes</topic><topic>X-chromosome inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarel-Gallily, Roni</creatorcontrib><creatorcontrib>Keshet, Gal</creatorcontrib><creatorcontrib>Kinreich, Shay</creatorcontrib><creatorcontrib>Haim-Abadi, Guy</creatorcontrib><creatorcontrib>Benvenisty, Nissim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarel-Gallily, Roni</au><au>Keshet, Gal</au><au>Kinreich, Shay</au><au>Haim-Abadi, Guy</au><au>Benvenisty, Nissim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>18</volume><issue>12</issue><spage>3881</spage><epage>3917</epage><pages>3881-3917</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1–4 d. Key points This protocol provides a step-by-step procedure to infer the presence of epigenetic aberrations in human pluripotent stem cells from RNA sequencing data, specifically focusing on the identification of imprinting and X-inactivation status. The pipeline provides a simple and easy-to-use methodology for the reliable identification of gene- and locus-specific loss-of-imprinting events as well as the accurate discrimination among different X-inactivation statuses. The authors describe an easy-to-follow bioinformatic pipeline, called EpiTyping, for the identification of abnormal biallelic expression of imprinted genes and the analysis of the X-chromosome inactivation state from RNA sequencing data obtained from human pluripotent stem cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41596-023-00898-5</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-8234-2685</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2023-12, Vol.18 (12), p.3881-3917
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_2885541504
source Nature; Alma/SFX Local Collection
subjects 631/532/2064/2117
631/532/2064/2158
Aberration
Analytical Chemistry
Biological Techniques
Biomedical and Life Sciences
Cell culture
Chromosomes
Computational Biology/Bioinformatics
Deactivation
Epigenetics
Gene expression
Gene sequencing
Genomic imprinting
Inactivation
Life Sciences
Microarrays
Organic Chemistry
Pipeline design
Pluripotency
Protocol
Regenerative medicine
Ribonucleic acid
RNA
Stem cells
X chromosomes
X-chromosome inactivation
title EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EpiTyping:%20analysis%20of%20epigenetic%20aberrations%20in%20parental%20imprinting%20and%20X-chromosome%20inactivation%20using%20RNA-seq&rft.jtitle=Nature%20protocols&rft.au=Sarel-Gallily,%20Roni&rft.date=2023-12-01&rft.volume=18&rft.issue=12&rft.spage=3881&rft.epage=3917&rft.pages=3881-3917&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-023-00898-5&rft_dat=%3Cproquest_cross%3E2898165114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898165114&rft_id=info:pmid/&rfr_iscdi=true