Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting

The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-11, Vol.15 (45), p.52506-52518
Hauptverfasser: Ding, Pengbo, Wang, Tian, Chang, Pu, Guan, Lixiu, Liu, Zongli, Xu, Chao, Tao, Junguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52518
container_issue 45
container_start_page 52506
container_title ACS applied materials & interfaces
container_volume 15
creator Ding, Pengbo
Wang, Tian
Chang, Pu
Guan, Lixiu
Liu, Zongli
Xu, Chao
Tao, Junguang
description The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a porous metal–organic framework (MOF) template. The electrocatalysts exhibit excellent bifunctional activity and stability in alkaline media. The N, P codoping induces electron redistribution to enhance conductivity and promote the intrinsic activity of the electrocatalysts. It optimizes the H* adsorption free energy and the dissociative adsorption energy, resulting in significant enhancement of HER activity. Moreover, the porous MOF structure exposes a large number of electrochemically active sites and facilitates the diffusion of ions and gases, which improve charge transfer efficiency and structural stability. Specifically, at a current density of 10 mA cm–2, the overpotential of the HER is only 32 mV, with a Tafel slope of 47 mV dec–1 and Faradaic efficiency as high as 98.51% (at 100 mA cm–2). Only a 338 mV overpotential is required to achieve a current density of 50 mA cm–2 for oxygen evolution reaction (OER), and a potential of 1.49 V (at 10 mA cm–2) is sufficient to drive overall water splitting. Further experimental measurements and first-principles calculations evidence that the exceptional performance is primarily attributed to the dual functionality of N and P dopants, which not only activate additional S sites but also initialize the phase transition of 2H to 1T-MoS2 to facilitate the rapid charge transfer. Through in-depth exploration of the combined design of multiple strategies for efficient catalysts, our work paves a new way for the development of future efficient nonprecious metal catalysts.
doi_str_mv 10.1021/acsami.3c11802
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2885540294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885540294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-7429834b1ee8df863e644568fb2c5cc7ded110a6335b42524f2b8e5ea6fee84c3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxTdGExG9eu7RGBf7b5dyJLCICYgJGI-b0p0lxdJi28XwPfzArsF4mjfJezMvvyS5JbhHMCWPUgW50z2mCBGYniUdMuA8FTSj5_-a88vkKoQtxjmjOOsk3_PGRL03kC6jlxE2RzSGoDcWuRrNF5N0DF4foEIvD-gVjVw6dvt2m7slRYUBFb1TMkpzDDGglfuSvkJFXWulwUY0NB_SaAtoeqy824BFxcGZJmpnkbQVWhzAS2PQe_vZo-Xe6Bi13VwnF7U0AW7-Zjd5mxSr0TSdLZ6eR8NZKillMe1zOhCMrwmAqGqRM8g5z3JRr6nKlOpXUBGCZc5YtuYtBl7TtYAMZF63Ca5YN7k73d1799lAiOVOBwXGSAuuCSUVIss4pgPeWu9P1pZyuXWNt22xkuDyF315Ql_-oWc_-aZ5gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885540294</pqid></control><display><type>article</type><title>Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting</title><source>ACS Publications</source><creator>Ding, Pengbo ; Wang, Tian ; Chang, Pu ; Guan, Lixiu ; Liu, Zongli ; Xu, Chao ; Tao, Junguang</creator><creatorcontrib>Ding, Pengbo ; Wang, Tian ; Chang, Pu ; Guan, Lixiu ; Liu, Zongli ; Xu, Chao ; Tao, Junguang</creatorcontrib><description>The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a porous metal–organic framework (MOF) template. The electrocatalysts exhibit excellent bifunctional activity and stability in alkaline media. The N, P codoping induces electron redistribution to enhance conductivity and promote the intrinsic activity of the electrocatalysts. It optimizes the H* adsorption free energy and the dissociative adsorption energy, resulting in significant enhancement of HER activity. Moreover, the porous MOF structure exposes a large number of electrochemically active sites and facilitates the diffusion of ions and gases, which improve charge transfer efficiency and structural stability. Specifically, at a current density of 10 mA cm–2, the overpotential of the HER is only 32 mV, with a Tafel slope of 47 mV dec–1 and Faradaic efficiency as high as 98.51% (at 100 mA cm–2). Only a 338 mV overpotential is required to achieve a current density of 50 mA cm–2 for oxygen evolution reaction (OER), and a potential of 1.49 V (at 10 mA cm–2) is sufficient to drive overall water splitting. Further experimental measurements and first-principles calculations evidence that the exceptional performance is primarily attributed to the dual functionality of N and P dopants, which not only activate additional S sites but also initialize the phase transition of 2H to 1T-MoS2 to facilitate the rapid charge transfer. Through in-depth exploration of the combined design of multiple strategies for efficient catalysts, our work paves a new way for the development of future efficient nonprecious metal catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c11802</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-11, Vol.15 (45), p.52506-52518</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0854-5892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c11802$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c11802$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Ding, Pengbo</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Chang, Pu</creatorcontrib><creatorcontrib>Guan, Lixiu</creatorcontrib><creatorcontrib>Liu, Zongli</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Tao, Junguang</creatorcontrib><title>Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a porous metal–organic framework (MOF) template. The electrocatalysts exhibit excellent bifunctional activity and stability in alkaline media. The N, P codoping induces electron redistribution to enhance conductivity and promote the intrinsic activity of the electrocatalysts. It optimizes the H* adsorption free energy and the dissociative adsorption energy, resulting in significant enhancement of HER activity. Moreover, the porous MOF structure exposes a large number of electrochemically active sites and facilitates the diffusion of ions and gases, which improve charge transfer efficiency and structural stability. Specifically, at a current density of 10 mA cm–2, the overpotential of the HER is only 32 mV, with a Tafel slope of 47 mV dec–1 and Faradaic efficiency as high as 98.51% (at 100 mA cm–2). Only a 338 mV overpotential is required to achieve a current density of 50 mA cm–2 for oxygen evolution reaction (OER), and a potential of 1.49 V (at 10 mA cm–2) is sufficient to drive overall water splitting. Further experimental measurements and first-principles calculations evidence that the exceptional performance is primarily attributed to the dual functionality of N and P dopants, which not only activate additional S sites but also initialize the phase transition of 2H to 1T-MoS2 to facilitate the rapid charge transfer. Through in-depth exploration of the combined design of multiple strategies for efficient catalysts, our work paves a new way for the development of future efficient nonprecious metal catalysts.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PAjEQxTdGExG9eu7RGBf7b5dyJLCICYgJGI-b0p0lxdJi28XwPfzArsF4mjfJezMvvyS5JbhHMCWPUgW50z2mCBGYniUdMuA8FTSj5_-a88vkKoQtxjmjOOsk3_PGRL03kC6jlxE2RzSGoDcWuRrNF5N0DF4foEIvD-gVjVw6dvt2m7slRYUBFb1TMkpzDDGglfuSvkJFXWulwUY0NB_SaAtoeqy824BFxcGZJmpnkbQVWhzAS2PQe_vZo-Xe6Bi13VwnF7U0AW7-Zjd5mxSr0TSdLZ6eR8NZKillMe1zOhCMrwmAqGqRM8g5z3JRr6nKlOpXUBGCZc5YtuYtBl7TtYAMZF63Ca5YN7k73d1799lAiOVOBwXGSAuuCSUVIss4pgPeWu9P1pZyuXWNt22xkuDyF315Ql_-oWc_-aZ5gw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ding, Pengbo</creator><creator>Wang, Tian</creator><creator>Chang, Pu</creator><creator>Guan, Lixiu</creator><creator>Liu, Zongli</creator><creator>Xu, Chao</creator><creator>Tao, Junguang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0854-5892</orcidid></search><sort><creationdate>20231101</creationdate><title>Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting</title><author>Ding, Pengbo ; Wang, Tian ; Chang, Pu ; Guan, Lixiu ; Liu, Zongli ; Xu, Chao ; Tao, Junguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-7429834b1ee8df863e644568fb2c5cc7ded110a6335b42524f2b8e5ea6fee84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Pengbo</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Chang, Pu</creatorcontrib><creatorcontrib>Guan, Lixiu</creatorcontrib><creatorcontrib>Liu, Zongli</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Tao, Junguang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Pengbo</au><au>Wang, Tian</au><au>Chang, Pu</au><au>Guan, Lixiu</au><au>Liu, Zongli</au><au>Xu, Chao</au><au>Tao, Junguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>45</issue><spage>52506</spage><epage>52518</epage><pages>52506-52518</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a porous metal–organic framework (MOF) template. The electrocatalysts exhibit excellent bifunctional activity and stability in alkaline media. The N, P codoping induces electron redistribution to enhance conductivity and promote the intrinsic activity of the electrocatalysts. It optimizes the H* adsorption free energy and the dissociative adsorption energy, resulting in significant enhancement of HER activity. Moreover, the porous MOF structure exposes a large number of electrochemically active sites and facilitates the diffusion of ions and gases, which improve charge transfer efficiency and structural stability. Specifically, at a current density of 10 mA cm–2, the overpotential of the HER is only 32 mV, with a Tafel slope of 47 mV dec–1 and Faradaic efficiency as high as 98.51% (at 100 mA cm–2). Only a 338 mV overpotential is required to achieve a current density of 50 mA cm–2 for oxygen evolution reaction (OER), and a potential of 1.49 V (at 10 mA cm–2) is sufficient to drive overall water splitting. Further experimental measurements and first-principles calculations evidence that the exceptional performance is primarily attributed to the dual functionality of N and P dopants, which not only activate additional S sites but also initialize the phase transition of 2H to 1T-MoS2 to facilitate the rapid charge transfer. Through in-depth exploration of the combined design of multiple strategies for efficient catalysts, our work paves a new way for the development of future efficient nonprecious metal catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c11802</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0854-5892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-11, Vol.15 (45), p.52506-52518
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2885540294
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Strategy%20Design%20of%20MOF-Derived%20N,%20P%20Co-Doped%20MoS2%20Electrocatalysts%20Toward%20Efficient%20Alkaline%20Hydrogen%20Evolution%20and%20Overall%20Water%20Splitting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ding,%20Pengbo&rft.date=2023-11-01&rft.volume=15&rft.issue=45&rft.spage=52506&rft.epage=52518&rft.pages=52506-52518&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c11802&rft_dat=%3Cproquest_acs_j%3E2885540294%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885540294&rft_id=info:pmid/&rfr_iscdi=true