The Q-Fractionalism Reasoning Learning Method
As the title suggests, in this work, a modern machine learning method called the Q-fractionalism reasoning is introduced. The proposed method is founded upon a synergy of the Q-learning and fractional fuzzy inference systems (FFISs). Unlike other approaches, the Q-fractionalism reasoning not only in...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-11, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the title suggests, in this work, a modern machine learning method called the Q-fractionalism reasoning is introduced. The proposed method is founded upon a synergy of the Q-learning and fractional fuzzy inference systems (FFISs). Unlike other approaches, the Q-fractionalism reasoning not only incorporates the knowledge base to understand how to perform but also explores a reasoning mechanism from the fractional order to justify what it has performed. This method suggests that the agent choose actions aimed at the characterization of reasoning. In fact, the agent deals with states termed as primary and secondary fuzzy states. The primary fuzzy states are unobservable and uncertain, for which the agent chooses actions. However, the projection of primary fuzzy states onto the knowledge base results in secondary fuzzy states, which are observable by the agent, allowing it to detect primary fuzzy states with degrees of detectability. With a practical experiment implemented on a linear switched reluctance motor (LSRM), the results demonstrate that the application of the Q-fractionalism reasoning in the real-time position control of the LSRM leads to a remarkable improvement of about 70\% in the accuracy of the control objective compared with a typical fuzzy inference system (FIS) under the same setting. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2023.3326376 |