Computability theory of generalized functions

The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2003-07, Vol.50 (4), p.469-505
Hauptverfasser: Zhong, Ning, Weihrauch, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 4
container_start_page 469
container_title Journal of the ACM
container_volume 50
creator Zhong, Ning
Weihrauch, Klaus
description The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.
doi_str_mv 10.1145/792538.792542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28847891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808075752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFeP3osH8ZI1k48mPcriFyx4UfAW0jTRLm2zJu1h_fW21JMHYeBl4OEd5kHoEsgagItbWVLB1HoOTo9QBkJILJl4P0YZIYRjwQFO0VlKu2kllMgM4U3o9uNgqqZthkM-fLoQD3nw-YfrXTRt8-3q3I-9HZrQp3N04k2b3MVvrtDbw_3r5glvXx6fN3dbbBlVA3bCCVCqripbSc6ZIMZ6XtLSFLa2HgrFuQEJVe1LRSQvXAHTWOGIZHXF2ApdL737GL5GlwbdNcm6tjW9C2PSVCkuVQkTePMvCIpMB4QUdEKv_qC7MMZ-ekNDySmVlM4QXiAbQ0rReb2PTWfiQQPRs2S9SNaLZPYDjehtKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194227222</pqid></control><display><type>article</type><title>Computability theory of generalized functions</title><source>ACM Digital Library Complete</source><creator>Zhong, Ning ; Weihrauch, Klaus</creator><creatorcontrib>Zhong, Ning ; Weihrauch, Klaus</creatorcontrib><description>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/792538.792542</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Computer science ; Digital computers ; Foundations ; Fourier transforms ; Mathematical analysis ; Mathematical models ; Operators ; Partial differential equations ; Theory ; Three dimensional</subject><ispartof>Journal of the ACM, 2003-07, Vol.50 (4), p.469-505</ispartof><rights>Copyright Association for Computing Machinery Jul 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</citedby><cites>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Ning</creatorcontrib><creatorcontrib>Weihrauch, Klaus</creatorcontrib><title>Computability theory of generalized functions</title><title>Journal of the ACM</title><description>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</description><subject>Computer science</subject><subject>Digital computers</subject><subject>Foundations</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Partial differential equations</subject><subject>Theory</subject><subject>Three dimensional</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFeP3osH8ZI1k48mPcriFyx4UfAW0jTRLm2zJu1h_fW21JMHYeBl4OEd5kHoEsgagItbWVLB1HoOTo9QBkJILJl4P0YZIYRjwQFO0VlKu2kllMgM4U3o9uNgqqZthkM-fLoQD3nw-YfrXTRt8-3q3I-9HZrQp3N04k2b3MVvrtDbw_3r5glvXx6fN3dbbBlVA3bCCVCqripbSc6ZIMZ6XtLSFLa2HgrFuQEJVe1LRSQvXAHTWOGIZHXF2ApdL737GL5GlwbdNcm6tjW9C2PSVCkuVQkTePMvCIpMB4QUdEKv_qC7MMZ-ekNDySmVlM4QXiAbQ0rReb2PTWfiQQPRs2S9SNaLZPYDjehtKQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Zhong, Ning</creator><creator>Weihrauch, Klaus</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030701</creationdate><title>Computability theory of generalized functions</title><author>Zhong, Ning ; Weihrauch, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer science</topic><topic>Digital computers</topic><topic>Foundations</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Partial differential equations</topic><topic>Theory</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ning</creatorcontrib><creatorcontrib>Weihrauch, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ning</au><au>Weihrauch, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computability theory of generalized functions</atitle><jtitle>Journal of the ACM</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>50</volume><issue>4</issue><spage>469</spage><epage>505</epage><pages>469-505</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/792538.792542</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2003-07, Vol.50 (4), p.469-505
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_28847891
source ACM Digital Library Complete
subjects Computer science
Digital computers
Foundations
Fourier transforms
Mathematical analysis
Mathematical models
Operators
Partial differential equations
Theory
Three dimensional
title Computability theory of generalized functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computability%20theory%20of%20generalized%20functions&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Zhong,%20Ning&rft.date=2003-07-01&rft.volume=50&rft.issue=4&rft.spage=469&rft.epage=505&rft.pages=469-505&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/792538.792542&rft_dat=%3Cproquest_cross%3E1808075752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194227222&rft_id=info:pmid/&rfr_iscdi=true