Computability theory of generalized functions
The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digit...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2003-07, Vol.50 (4), p.469-505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 4 |
container_start_page | 469 |
container_title | Journal of the ACM |
container_volume | 50 |
creator | Zhong, Ning Weihrauch, Klaus |
description | The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable. |
doi_str_mv | 10.1145/792538.792542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28847891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808075752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFeP3osH8ZI1k48mPcriFyx4UfAW0jTRLm2zJu1h_fW21JMHYeBl4OEd5kHoEsgagItbWVLB1HoOTo9QBkJILJl4P0YZIYRjwQFO0VlKu2kllMgM4U3o9uNgqqZthkM-fLoQD3nw-YfrXTRt8-3q3I-9HZrQp3N04k2b3MVvrtDbw_3r5glvXx6fN3dbbBlVA3bCCVCqripbSc6ZIMZ6XtLSFLa2HgrFuQEJVe1LRSQvXAHTWOGIZHXF2ApdL737GL5GlwbdNcm6tjW9C2PSVCkuVQkTePMvCIpMB4QUdEKv_qC7MMZ-ekNDySmVlM4QXiAbQ0rReb2PTWfiQQPRs2S9SNaLZPYDjehtKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194227222</pqid></control><display><type>article</type><title>Computability theory of generalized functions</title><source>ACM Digital Library Complete</source><creator>Zhong, Ning ; Weihrauch, Klaus</creator><creatorcontrib>Zhong, Ning ; Weihrauch, Klaus</creatorcontrib><description>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/792538.792542</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Computer science ; Digital computers ; Foundations ; Fourier transforms ; Mathematical analysis ; Mathematical models ; Operators ; Partial differential equations ; Theory ; Three dimensional</subject><ispartof>Journal of the ACM, 2003-07, Vol.50 (4), p.469-505</ispartof><rights>Copyright Association for Computing Machinery Jul 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</citedby><cites>FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Ning</creatorcontrib><creatorcontrib>Weihrauch, Klaus</creatorcontrib><title>Computability theory of generalized functions</title><title>Journal of the ACM</title><description>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</description><subject>Computer science</subject><subject>Digital computers</subject><subject>Foundations</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Partial differential equations</subject><subject>Theory</subject><subject>Three dimensional</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFeP3osH8ZI1k48mPcriFyx4UfAW0jTRLm2zJu1h_fW21JMHYeBl4OEd5kHoEsgagItbWVLB1HoOTo9QBkJILJl4P0YZIYRjwQFO0VlKu2kllMgM4U3o9uNgqqZthkM-fLoQD3nw-YfrXTRt8-3q3I-9HZrQp3N04k2b3MVvrtDbw_3r5glvXx6fN3dbbBlVA3bCCVCqripbSc6ZIMZ6XtLSFLa2HgrFuQEJVe1LRSQvXAHTWOGIZHXF2ApdL737GL5GlwbdNcm6tjW9C2PSVCkuVQkTePMvCIpMB4QUdEKv_qC7MMZ-ekNDySmVlM4QXiAbQ0rReb2PTWfiQQPRs2S9SNaLZPYDjehtKQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Zhong, Ning</creator><creator>Weihrauch, Klaus</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030701</creationdate><title>Computability theory of generalized functions</title><author>Zhong, Ning ; Weihrauch, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e5e5188dbbcb744350acf4929a6cdcf16844a171bdf980746e61e61c5e073db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer science</topic><topic>Digital computers</topic><topic>Foundations</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Partial differential equations</topic><topic>Theory</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ning</creatorcontrib><creatorcontrib>Weihrauch, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ning</au><au>Weihrauch, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computability theory of generalized functions</atitle><jtitle>Journal of the ACM</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>50</volume><issue>4</issue><spage>469</spage><epage>505</epage><pages>469-505</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>The theory of generalized functions is the foundation of the modern theory of partial differential equations (PDE). As computers are playing an ever-larger role in solving PDEs, it is important to know those operations involving generalized functions in analysis and PDE that can be computed on digital computers. In this article, we introduce natural concepts of computability on test functions and generalized functions, as well as computability on Schwartz test functions and tempered distributions. Type-2 Turing machines are used as the machine model [Weihrauch 2000]. It is shown here that differentiation and integration on distributions are computable operators, and various types of Fourier transforms and convolutions are also computable operators. As an application, it is shown that the solution operator of the distributional inhomogeneous three dimensional wave equation is computable.</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/792538.792542</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2003-07, Vol.50 (4), p.469-505 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28847891 |
source | ACM Digital Library Complete |
subjects | Computer science Digital computers Foundations Fourier transforms Mathematical analysis Mathematical models Operators Partial differential equations Theory Three dimensional |
title | Computability theory of generalized functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computability%20theory%20of%20generalized%20functions&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Zhong,%20Ning&rft.date=2003-07-01&rft.volume=50&rft.issue=4&rft.spage=469&rft.epage=505&rft.pages=469-505&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/792538.792542&rft_dat=%3Cproquest_cross%3E1808075752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194227222&rft_id=info:pmid/&rfr_iscdi=true |