Impact of the Hunga Tonga volcanic eruption on stratospheric composition
The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of la...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-11, Vol.120 (46), p.1-e2301994120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2301994120 |
---|---|
container_issue | 46 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Wilmouth, David M. Østerstrøm, Freja F. Smith, Jessica B. Anderson, James G. Salawitch, Ross J. |
description | The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O
3
(–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (>100%) and HNO
3
(43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O
3
reductions in SH midlatitudes and O
3
increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors. |
doi_str_mv | 10.1073/pnas.2301994120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2884677732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891819210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</originalsourceid><addsrcrecordid>eNpdkEFLxDAQRoMouK6evRa8eOnuJJOmmaMs6i4seFnPJQ2p26VtatIK_ntbVhCEYebwPT6Gx9g9hxWHHNd9Z-JKIHAiyQVcsAUH4qmSBJdsASDyVEshr9lNjCcAoEzDgm13bW_skPgqGY4u2Y7dh0kOft5fvrGmq23iwtgPte-SaeIQzOBjf3RhSqxvex_rObxlV5Vporv7vUv2_vJ82GzT_dvrbvO0Ty1KHFJLSiJpzFApklaitFDKjNAYnjmNRCUKMlWZI9cKuVBCG6qUUCg4CIdL9nju7YP_HF0ciraO1jWN6ZwfYyG0lirPcxQT-vAPPfkxdNN3E0Vcc5oqJ2p9pmzwMQZXFX2oWxO-Cw7FbLaYzRZ_ZvEHfvpqIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891819210</pqid></control><display><type>article</type><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</creator><creatorcontrib>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</creatorcontrib><description>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O
3
(–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (>100%) and HNO
3
(43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O
3
reductions in SH midlatitudes and O
3
increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2301994120</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Aerosols ; Altitude ; Anomalies ; Atmospheric chemistry ; Chemical composition ; Eruptions ; Explosive impact tests ; Latitude ; Mass distribution ; Northern Hemisphere ; Peak pressure ; Perturbation ; Satellite instruments ; Satellite observation ; Southern Hemisphere ; Stratosphere ; Tropical environments ; Volcanic activity ; Volcanic eruptions ; Volcanoes ; Water vapor</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (46), p.1-e2301994120</ispartof><rights>Copyright National Academy of Sciences Nov 14, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</citedby><cites>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</cites><orcidid>0000-0001-9690-6074 ; 0000-0003-4125-3365 ; 0000-0001-8597-5832 ; 0000-0002-8832-1479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wilmouth, David M.</creatorcontrib><creatorcontrib>Østerstrøm, Freja F.</creatorcontrib><creatorcontrib>Smith, Jessica B.</creatorcontrib><creatorcontrib>Anderson, James G.</creatorcontrib><creatorcontrib>Salawitch, Ross J.</creatorcontrib><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O
3
(–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (>100%) and HNO
3
(43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O
3
reductions in SH midlatitudes and O
3
increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</description><subject>Aerosols</subject><subject>Altitude</subject><subject>Anomalies</subject><subject>Atmospheric chemistry</subject><subject>Chemical composition</subject><subject>Eruptions</subject><subject>Explosive impact tests</subject><subject>Latitude</subject><subject>Mass distribution</subject><subject>Northern Hemisphere</subject><subject>Peak pressure</subject><subject>Perturbation</subject><subject>Satellite instruments</subject><subject>Satellite observation</subject><subject>Southern Hemisphere</subject><subject>Stratosphere</subject><subject>Tropical environments</subject><subject>Volcanic activity</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water vapor</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLxDAQRoMouK6evRa8eOnuJJOmmaMs6i4seFnPJQ2p26VtatIK_ntbVhCEYebwPT6Gx9g9hxWHHNd9Z-JKIHAiyQVcsAUH4qmSBJdsASDyVEshr9lNjCcAoEzDgm13bW_skPgqGY4u2Y7dh0kOft5fvrGmq23iwtgPte-SaeIQzOBjf3RhSqxvex_rObxlV5Vporv7vUv2_vJ82GzT_dvrbvO0Ty1KHFJLSiJpzFApklaitFDKjNAYnjmNRCUKMlWZI9cKuVBCG6qUUCg4CIdL9nju7YP_HF0ciraO1jWN6ZwfYyG0lirPcxQT-vAPPfkxdNN3E0Vcc5oqJ2p9pmzwMQZXFX2oWxO-Cw7FbLaYzRZ_ZvEHfvpqIA</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Wilmouth, David M.</creator><creator>Østerstrøm, Freja F.</creator><creator>Smith, Jessica B.</creator><creator>Anderson, James G.</creator><creator>Salawitch, Ross J.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9690-6074</orcidid><orcidid>https://orcid.org/0000-0003-4125-3365</orcidid><orcidid>https://orcid.org/0000-0001-8597-5832</orcidid><orcidid>https://orcid.org/0000-0002-8832-1479</orcidid></search><sort><creationdate>20231114</creationdate><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><author>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Altitude</topic><topic>Anomalies</topic><topic>Atmospheric chemistry</topic><topic>Chemical composition</topic><topic>Eruptions</topic><topic>Explosive impact tests</topic><topic>Latitude</topic><topic>Mass distribution</topic><topic>Northern Hemisphere</topic><topic>Peak pressure</topic><topic>Perturbation</topic><topic>Satellite instruments</topic><topic>Satellite observation</topic><topic>Southern Hemisphere</topic><topic>Stratosphere</topic><topic>Tropical environments</topic><topic>Volcanic activity</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilmouth, David M.</creatorcontrib><creatorcontrib>Østerstrøm, Freja F.</creatorcontrib><creatorcontrib>Smith, Jessica B.</creatorcontrib><creatorcontrib>Anderson, James G.</creatorcontrib><creatorcontrib>Salawitch, Ross J.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilmouth, David M.</au><au>Østerstrøm, Freja F.</au><au>Smith, Jessica B.</au><au>Anderson, James G.</au><au>Salawitch, Ross J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-11-14</date><risdate>2023</risdate><volume>120</volume><issue>46</issue><spage>1</spage><epage>e2301994120</epage><pages>1-e2301994120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O
3
(–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (>100%) and HNO
3
(43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O
3
reductions in SH midlatitudes and O
3
increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2301994120</doi><orcidid>https://orcid.org/0000-0001-9690-6074</orcidid><orcidid>https://orcid.org/0000-0003-4125-3365</orcidid><orcidid>https://orcid.org/0000-0001-8597-5832</orcidid><orcidid>https://orcid.org/0000-0002-8832-1479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (46), p.1-e2301994120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_2884677732 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aerosols Altitude Anomalies Atmospheric chemistry Chemical composition Eruptions Explosive impact tests Latitude Mass distribution Northern Hemisphere Peak pressure Perturbation Satellite instruments Satellite observation Southern Hemisphere Stratosphere Tropical environments Volcanic activity Volcanic eruptions Volcanoes Water vapor |
title | Impact of the Hunga Tonga volcanic eruption on stratospheric composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20the%20Hunga%20Tonga%20volcanic%20eruption%20on%20stratospheric%20composition&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wilmouth,%20David%20M.&rft.date=2023-11-14&rft.volume=120&rft.issue=46&rft.spage=1&rft.epage=e2301994120&rft.pages=1-e2301994120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2301994120&rft_dat=%3Cproquest_cross%3E2891819210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891819210&rft_id=info:pmid/&rfr_iscdi=true |