Impact of the Hunga Tonga volcanic eruption on stratospheric composition

The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-11, Vol.120 (46), p.1-e2301994120
Hauptverfasser: Wilmouth, David M., Østerstrøm, Freja F., Smith, Jessica B., Anderson, James G., Salawitch, Ross J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2301994120
container_issue 46
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Wilmouth, David M.
Østerstrøm, Freja F.
Smith, Jessica B.
Anderson, James G.
Salawitch, Ross J.
description The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O 3 (–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (>100%) and HNO 3 (43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O 3 reductions in SH midlatitudes and O 3 increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.
doi_str_mv 10.1073/pnas.2301994120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2884677732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891819210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</originalsourceid><addsrcrecordid>eNpdkEFLxDAQRoMouK6evRa8eOnuJJOmmaMs6i4seFnPJQ2p26VtatIK_ntbVhCEYebwPT6Gx9g9hxWHHNd9Z-JKIHAiyQVcsAUH4qmSBJdsASDyVEshr9lNjCcAoEzDgm13bW_skPgqGY4u2Y7dh0kOft5fvrGmq23iwtgPte-SaeIQzOBjf3RhSqxvex_rObxlV5Vporv7vUv2_vJ82GzT_dvrbvO0Ty1KHFJLSiJpzFApklaitFDKjNAYnjmNRCUKMlWZI9cKuVBCG6qUUCg4CIdL9nju7YP_HF0ciraO1jWN6ZwfYyG0lirPcxQT-vAPPfkxdNN3E0Vcc5oqJ2p9pmzwMQZXFX2oWxO-Cw7FbLaYzRZ_ZvEHfvpqIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891819210</pqid></control><display><type>article</type><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</creator><creatorcontrib>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</creatorcontrib><description>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O 3 (–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (&gt;100%) and HNO 3 (43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O 3 reductions in SH midlatitudes and O 3 increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2301994120</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Aerosols ; Altitude ; Anomalies ; Atmospheric chemistry ; Chemical composition ; Eruptions ; Explosive impact tests ; Latitude ; Mass distribution ; Northern Hemisphere ; Peak pressure ; Perturbation ; Satellite instruments ; Satellite observation ; Southern Hemisphere ; Stratosphere ; Tropical environments ; Volcanic activity ; Volcanic eruptions ; Volcanoes ; Water vapor</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (46), p.1-e2301994120</ispartof><rights>Copyright National Academy of Sciences Nov 14, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</citedby><cites>FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</cites><orcidid>0000-0001-9690-6074 ; 0000-0003-4125-3365 ; 0000-0001-8597-5832 ; 0000-0002-8832-1479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wilmouth, David M.</creatorcontrib><creatorcontrib>Østerstrøm, Freja F.</creatorcontrib><creatorcontrib>Smith, Jessica B.</creatorcontrib><creatorcontrib>Anderson, James G.</creatorcontrib><creatorcontrib>Salawitch, Ross J.</creatorcontrib><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O 3 (–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (&gt;100%) and HNO 3 (43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O 3 reductions in SH midlatitudes and O 3 increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</description><subject>Aerosols</subject><subject>Altitude</subject><subject>Anomalies</subject><subject>Atmospheric chemistry</subject><subject>Chemical composition</subject><subject>Eruptions</subject><subject>Explosive impact tests</subject><subject>Latitude</subject><subject>Mass distribution</subject><subject>Northern Hemisphere</subject><subject>Peak pressure</subject><subject>Perturbation</subject><subject>Satellite instruments</subject><subject>Satellite observation</subject><subject>Southern Hemisphere</subject><subject>Stratosphere</subject><subject>Tropical environments</subject><subject>Volcanic activity</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water vapor</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLxDAQRoMouK6evRa8eOnuJJOmmaMs6i4seFnPJQ2p26VtatIK_ntbVhCEYebwPT6Gx9g9hxWHHNd9Z-JKIHAiyQVcsAUH4qmSBJdsASDyVEshr9lNjCcAoEzDgm13bW_skPgqGY4u2Y7dh0kOft5fvrGmq23iwtgPte-SaeIQzOBjf3RhSqxvex_rObxlV5Vporv7vUv2_vJ82GzT_dvrbvO0Ty1KHFJLSiJpzFApklaitFDKjNAYnjmNRCUKMlWZI9cKuVBCG6qUUCg4CIdL9nju7YP_HF0ciraO1jWN6ZwfYyG0lirPcxQT-vAPPfkxdNN3E0Vcc5oqJ2p9pmzwMQZXFX2oWxO-Cw7FbLaYzRZ_ZvEHfvpqIA</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Wilmouth, David M.</creator><creator>Østerstrøm, Freja F.</creator><creator>Smith, Jessica B.</creator><creator>Anderson, James G.</creator><creator>Salawitch, Ross J.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9690-6074</orcidid><orcidid>https://orcid.org/0000-0003-4125-3365</orcidid><orcidid>https://orcid.org/0000-0001-8597-5832</orcidid><orcidid>https://orcid.org/0000-0002-8832-1479</orcidid></search><sort><creationdate>20231114</creationdate><title>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</title><author>Wilmouth, David M. ; Østerstrøm, Freja F. ; Smith, Jessica B. ; Anderson, James G. ; Salawitch, Ross J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c9643983536694c434c0b4593aa15e8399b329afb73186312628a9f62632102e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Altitude</topic><topic>Anomalies</topic><topic>Atmospheric chemistry</topic><topic>Chemical composition</topic><topic>Eruptions</topic><topic>Explosive impact tests</topic><topic>Latitude</topic><topic>Mass distribution</topic><topic>Northern Hemisphere</topic><topic>Peak pressure</topic><topic>Perturbation</topic><topic>Satellite instruments</topic><topic>Satellite observation</topic><topic>Southern Hemisphere</topic><topic>Stratosphere</topic><topic>Tropical environments</topic><topic>Volcanic activity</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilmouth, David M.</creatorcontrib><creatorcontrib>Østerstrøm, Freja F.</creatorcontrib><creatorcontrib>Smith, Jessica B.</creatorcontrib><creatorcontrib>Anderson, James G.</creatorcontrib><creatorcontrib>Salawitch, Ross J.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilmouth, David M.</au><au>Østerstrøm, Freja F.</au><au>Smith, Jessica B.</au><au>Anderson, James G.</au><au>Salawitch, Ross J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of the Hunga Tonga volcanic eruption on stratospheric composition</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-11-14</date><risdate>2023</risdate><volume>120</volume><issue>46</issue><spage>1</spage><epage>e2301994120</epage><pages>1-e2301994120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The explosive eruption of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O 3 (–14%) and HCl (–22%) at SH midlatitudes and increases in ClO (&gt;100%) and HNO 3 (43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2–100 hPa due to the HTHH eruption include widespread O 3 reductions in SH midlatitudes and O 3 increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately –7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry–climate–aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2301994120</doi><orcidid>https://orcid.org/0000-0001-9690-6074</orcidid><orcidid>https://orcid.org/0000-0003-4125-3365</orcidid><orcidid>https://orcid.org/0000-0001-8597-5832</orcidid><orcidid>https://orcid.org/0000-0002-8832-1479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (46), p.1-e2301994120
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_2884677732
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aerosols
Altitude
Anomalies
Atmospheric chemistry
Chemical composition
Eruptions
Explosive impact tests
Latitude
Mass distribution
Northern Hemisphere
Peak pressure
Perturbation
Satellite instruments
Satellite observation
Southern Hemisphere
Stratosphere
Tropical environments
Volcanic activity
Volcanic eruptions
Volcanoes
Water vapor
title Impact of the Hunga Tonga volcanic eruption on stratospheric composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20the%20Hunga%20Tonga%20volcanic%20eruption%20on%20stratospheric%20composition&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wilmouth,%20David%20M.&rft.date=2023-11-14&rft.volume=120&rft.issue=46&rft.spage=1&rft.epage=e2301994120&rft.pages=1-e2301994120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2301994120&rft_dat=%3Cproquest_cross%3E2891819210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891819210&rft_id=info:pmid/&rfr_iscdi=true