A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields

A 122-channel neuromagnetometer with a helmet-shaped detector array covering the entire head allows simultaneous recording of magnetic fields over the whole cortex. The instrument has 122 planar first-order gradiometers in dual units at 61 measurement sites. The SQUIDs are directly coupled to the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1993-11, Vol.29 (6), p.3315-3320
Hauptverfasser: Knuutila, J.E.T., Ahonen, A.I., Hamalainen, M.S., Kajola, M.J., Laine, P.P., Lounasmaa, O.V., Parkkonen, L.T., Simola, J.T.A., Tesche, C.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3320
container_issue 6
container_start_page 3315
container_title IEEE transactions on magnetics
container_volume 29
creator Knuutila, J.E.T.
Ahonen, A.I.
Hamalainen, M.S.
Kajola, M.J.
Laine, P.P.
Lounasmaa, O.V.
Parkkonen, L.T.
Simola, J.T.A.
Tesche, C.D.
description A 122-channel neuromagnetometer with a helmet-shaped detector array covering the entire head allows simultaneous recording of magnetic fields over the whole cortex. The instrument has 122 planar first-order gradiometers in dual units at 61 measurement sites. The SQUIDs are directly coupled to the read-out electronics, with amplifier noise cancellation to eliminate the need for separate preamplifiers inside the magnetically shielded room. The authors analyze the performance of the device and compare it with traditional axial gradiometer arrays by considering signal-to-noise ratios, spatial sampling theory, confidence intervals for equivalent current dipole fits, and information-theoretical channel capacity. The analysis includes the fact that instrument noise is smaller than the background activity of the brain; the signal-to-noise ratio and the resolution of the planar array are in that case equal to or better than that of an axial array. The number of channels and their spacing are very suitable for neuromagnetic measurements.< >
doi_str_mv 10.1109/20.281163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28843941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>281163</ieee_id><sourcerecordid>744634583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b5c416d3bc4173077e308b3d823467e365d3adcbc7ff4de671458dc5a100de83</originalsourceid><addsrcrecordid>eNqNkctLw0AQxhdRsFYPXj3tQSweUmcfSTbHUl-FghTrOWw2kzaSR91N0f73bknpUTx9DPObb4b5CLlmMGYMkgcOY64Yi8QJGbBEsgAgSk7JAICpIJGRPCcXzn36UoYMBmQxoYzzwKx102BFv9dthYFpbYc_9H3xMXukbuc6rGnRWlqjdltbNivarZFmVpfNyNFarxrsSkOLEqvcXZKzQlcOrw46JMvnp-X0NZi_vcymk3lgpAi7IAuNZFEuMi-xgDhGASoTueJCRr6Iwlzo3GQmLgqZYxT7g1VuQs0AclRiSEa97ca2X1t0XVqXzmBV6QbbrUtjKSPhR4Qn7_4kuVJS-Ff9A2RKQrzffd-DxrbOWSzSjS1rbXcpg3QfQ8oh7WPw7O3BVDujq8LqxpTuOCAkJBwSj930WImIx-7B4xcmqYy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28184078</pqid></control><display><type>article</type><title>A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields</title><source>IEEE Electronic Library (IEL)</source><creator>Knuutila, J.E.T. ; Ahonen, A.I. ; Hamalainen, M.S. ; Kajola, M.J. ; Laine, P.P. ; Lounasmaa, O.V. ; Parkkonen, L.T. ; Simola, J.T.A. ; Tesche, C.D.</creator><creatorcontrib>Knuutila, J.E.T. ; Ahonen, A.I. ; Hamalainen, M.S. ; Kajola, M.J. ; Laine, P.P. ; Lounasmaa, O.V. ; Parkkonen, L.T. ; Simola, J.T.A. ; Tesche, C.D.</creatorcontrib><description>A 122-channel neuromagnetometer with a helmet-shaped detector array covering the entire head allows simultaneous recording of magnetic fields over the whole cortex. The instrument has 122 planar first-order gradiometers in dual units at 61 measurement sites. The SQUIDs are directly coupled to the read-out electronics, with amplifier noise cancellation to eliminate the need for separate preamplifiers inside the magnetically shielded room. The authors analyze the performance of the device and compare it with traditional axial gradiometer arrays by considering signal-to-noise ratios, spatial sampling theory, confidence intervals for equivalent current dipole fits, and information-theoretical channel capacity. The analysis includes the fact that instrument noise is smaller than the background activity of the brain; the signal-to-noise ratio and the resolution of the planar array are in that case equal to or better than that of an axial array. The number of channels and their spacing are very suitable for neuromagnetic measurements.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.281163</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Biological and medical sciences ; Detectors ; Electrodiagnosis. Electric activity recording ; Instruments ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic analysis ; Magnetic field measurement ; Magnetic heads ; Magnetic shielding ; Medical sciences ; Nervous system ; Sensor arrays ; Signal analysis ; Signal to noise ratio ; SQUIDs</subject><ispartof>IEEE transactions on magnetics, 1993-11, Vol.29 (6), p.3315-3320</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b5c416d3bc4173077e308b3d823467e365d3adcbc7ff4de671458dc5a100de83</citedby><cites>FETCH-LOGICAL-c435t-b5c416d3bc4173077e308b3d823467e365d3adcbc7ff4de671458dc5a100de83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/281163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/281163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3409209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knuutila, J.E.T.</creatorcontrib><creatorcontrib>Ahonen, A.I.</creatorcontrib><creatorcontrib>Hamalainen, M.S.</creatorcontrib><creatorcontrib>Kajola, M.J.</creatorcontrib><creatorcontrib>Laine, P.P.</creatorcontrib><creatorcontrib>Lounasmaa, O.V.</creatorcontrib><creatorcontrib>Parkkonen, L.T.</creatorcontrib><creatorcontrib>Simola, J.T.A.</creatorcontrib><creatorcontrib>Tesche, C.D.</creatorcontrib><title>A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A 122-channel neuromagnetometer with a helmet-shaped detector array covering the entire head allows simultaneous recording of magnetic fields over the whole cortex. The instrument has 122 planar first-order gradiometers in dual units at 61 measurement sites. The SQUIDs are directly coupled to the read-out electronics, with amplifier noise cancellation to eliminate the need for separate preamplifiers inside the magnetically shielded room. The authors analyze the performance of the device and compare it with traditional axial gradiometer arrays by considering signal-to-noise ratios, spatial sampling theory, confidence intervals for equivalent current dipole fits, and information-theoretical channel capacity. The analysis includes the fact that instrument noise is smaller than the background activity of the brain; the signal-to-noise ratio and the resolution of the planar array are in that case equal to or better than that of an axial array. The number of channels and their spacing are very suitable for neuromagnetic measurements.&lt; &gt;</description><subject>Biological and medical sciences</subject><subject>Detectors</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Instruments</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic analysis</subject><subject>Magnetic field measurement</subject><subject>Magnetic heads</subject><subject>Magnetic shielding</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Sensor arrays</subject><subject>Signal analysis</subject><subject>Signal to noise ratio</subject><subject>SQUIDs</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkctLw0AQxhdRsFYPXj3tQSweUmcfSTbHUl-FghTrOWw2kzaSR91N0f73bknpUTx9DPObb4b5CLlmMGYMkgcOY64Yi8QJGbBEsgAgSk7JAICpIJGRPCcXzn36UoYMBmQxoYzzwKx102BFv9dthYFpbYc_9H3xMXukbuc6rGnRWlqjdltbNivarZFmVpfNyNFarxrsSkOLEqvcXZKzQlcOrw46JMvnp-X0NZi_vcymk3lgpAi7IAuNZFEuMi-xgDhGASoTueJCRr6Iwlzo3GQmLgqZYxT7g1VuQs0AclRiSEa97ca2X1t0XVqXzmBV6QbbrUtjKSPhR4Qn7_4kuVJS-Ff9A2RKQrzffd-DxrbOWSzSjS1rbXcpg3QfQ8oh7WPw7O3BVDujq8LqxpTuOCAkJBwSj930WImIx-7B4xcmqYy6</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Knuutila, J.E.T.</creator><creator>Ahonen, A.I.</creator><creator>Hamalainen, M.S.</creator><creator>Kajola, M.J.</creator><creator>Laine, P.P.</creator><creator>Lounasmaa, O.V.</creator><creator>Parkkonen, L.T.</creator><creator>Simola, J.T.A.</creator><creator>Tesche, C.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19931101</creationdate><title>A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields</title><author>Knuutila, J.E.T. ; Ahonen, A.I. ; Hamalainen, M.S. ; Kajola, M.J. ; Laine, P.P. ; Lounasmaa, O.V. ; Parkkonen, L.T. ; Simola, J.T.A. ; Tesche, C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b5c416d3bc4173077e308b3d823467e365d3adcbc7ff4de671458dc5a100de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Biological and medical sciences</topic><topic>Detectors</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Instruments</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic analysis</topic><topic>Magnetic field measurement</topic><topic>Magnetic heads</topic><topic>Magnetic shielding</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Sensor arrays</topic><topic>Signal analysis</topic><topic>Signal to noise ratio</topic><topic>SQUIDs</topic><toplevel>online_resources</toplevel><creatorcontrib>Knuutila, J.E.T.</creatorcontrib><creatorcontrib>Ahonen, A.I.</creatorcontrib><creatorcontrib>Hamalainen, M.S.</creatorcontrib><creatorcontrib>Kajola, M.J.</creatorcontrib><creatorcontrib>Laine, P.P.</creatorcontrib><creatorcontrib>Lounasmaa, O.V.</creatorcontrib><creatorcontrib>Parkkonen, L.T.</creatorcontrib><creatorcontrib>Simola, J.T.A.</creatorcontrib><creatorcontrib>Tesche, C.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knuutila, J.E.T.</au><au>Ahonen, A.I.</au><au>Hamalainen, M.S.</au><au>Kajola, M.J.</au><au>Laine, P.P.</au><au>Lounasmaa, O.V.</au><au>Parkkonen, L.T.</au><au>Simola, J.T.A.</au><au>Tesche, C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1993-11-01</date><risdate>1993</risdate><volume>29</volume><issue>6</issue><spage>3315</spage><epage>3320</epage><pages>3315-3320</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A 122-channel neuromagnetometer with a helmet-shaped detector array covering the entire head allows simultaneous recording of magnetic fields over the whole cortex. The instrument has 122 planar first-order gradiometers in dual units at 61 measurement sites. The SQUIDs are directly coupled to the read-out electronics, with amplifier noise cancellation to eliminate the need for separate preamplifiers inside the magnetically shielded room. The authors analyze the performance of the device and compare it with traditional axial gradiometer arrays by considering signal-to-noise ratios, spatial sampling theory, confidence intervals for equivalent current dipole fits, and information-theoretical channel capacity. The analysis includes the fact that instrument noise is smaller than the background activity of the brain; the signal-to-noise ratio and the resolution of the planar array are in that case equal to or better than that of an axial array. The number of channels and their spacing are very suitable for neuromagnetic measurements.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.281163</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1993-11, Vol.29 (6), p.3315-3320
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28843941
source IEEE Electronic Library (IEL)
subjects Biological and medical sciences
Detectors
Electrodiagnosis. Electric activity recording
Instruments
Investigative techniques, diagnostic techniques (general aspects)
Magnetic analysis
Magnetic field measurement
Magnetic heads
Magnetic shielding
Medical sciences
Nervous system
Sensor arrays
Signal analysis
Signal to noise ratio
SQUIDs
title A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20122-channel%20whole-cortex%20SQUID%20system%20for%20measuring%20the%20brain's%20magnetic%20fields&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Knuutila,%20J.E.T.&rft.date=1993-11-01&rft.volume=29&rft.issue=6&rft.spage=3315&rft.epage=3320&rft.pages=3315-3320&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.281163&rft_dat=%3Cproquest_RIE%3E744634583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28184078&rft_id=info:pmid/&rft_ieee_id=281163&rfr_iscdi=true