The dual‐action mechanism of Arabidopsis cryptochromes

ABSTRACT Photoreceptor cryptochromes (CRYs) mediate blue‐light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co‐factors, chromatin regulators, splicing fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative plant biology 2024-05, Vol.66 (5), p.883-896
Hauptverfasser: Qu, Gao‐Ping, Jiang, Bochen, Lin, Chentao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 5
container_start_page 883
container_title Journal of integrative plant biology
container_volume 66
creator Qu, Gao‐Ping
Jiang, Bochen
Lin, Chentao
description ABSTRACT Photoreceptor cryptochromes (CRYs) mediate blue‐light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co‐factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light‐regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini‐review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock‐and‐Key” and the “Liquid‐Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY‐interacting proteins and the functional diversity of the CRY photoreceptors. This mini‐review summarizes 84 reported cryptochrome‐interacting proteins and their main signal transduction networks, and proposes two mechanisms for cryptochrome action. In the Lock‐and‐Key mechanism, blue light‐induces a change in binding activity between cryptochromes and cryptochrome‐interacting proteins; the LLPS mechanism involves blue‐light‐induced co‐condensation of cryptochromes and cryptochrome‐interacting proteins.
doi_str_mv 10.1111/jipb.13578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2884184788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884184788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3938-170c73a8b22984840fd17ca3f80085a5f27835edf4cdb953ac4e4881bfc64e003</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgWgpLDwAisSCkAK-JT4ZS8WlqBIMZbYcx1FTJXWwG6FuPALPyJPgksLAgJfj4dOvc36ETgm-IuFdL6s2vyIsEbCHhkRwHosMZ_vhnwoaZ1jQATryfokxA5zSQzRgAVBO0yGC-cJERafqz_cPpdeVXUWN0Qu1qnwT2TIaO5VXhW195SPtNu3a6oWzjfHH6KBUtTcnuzlCL3e388lDPHu6n07Gs1izjEFMBNaCKcgpzYADx2VBhFasBIwhUUlJBbDEFCXXRZ4lTGluOADJS51yEzYeoYs-t3X2tTN-LZvKa1PXamVs5yUF4AS4AAj0_A9d2s6twnaS4TQcn1K-VZe90s5670wpW1c1ym0kwXLbp9z2Kb_7DPhsF9nljSl-6U-BAZAevFW12fwTJR-nzzd96BfamH9i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060386248</pqid></control><display><type>article</type><title>The dual‐action mechanism of Arabidopsis cryptochromes</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Qu, Gao‐Ping ; Jiang, Bochen ; Lin, Chentao</creator><creatorcontrib>Qu, Gao‐Ping ; Jiang, Bochen ; Lin, Chentao</creatorcontrib><description>ABSTRACT Photoreceptor cryptochromes (CRYs) mediate blue‐light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co‐factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light‐regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini‐review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock‐and‐Key” and the “Liquid‐Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY‐interacting proteins and the functional diversity of the CRY photoreceptors. This mini‐review summarizes 84 reported cryptochrome‐interacting proteins and their main signal transduction networks, and proposes two mechanisms for cryptochrome action. In the Lock‐and‐Key mechanism, blue light‐induces a change in binding activity between cryptochromes and cryptochrome‐interacting proteins; the LLPS mechanism involves blue‐light‐induced co‐condensation of cryptochromes and cryptochrome‐interacting proteins.</description><identifier>ISSN: 1672-9072</identifier><identifier>EISSN: 1744-7909</identifier><identifier>DOI: 10.1111/jipb.13578</identifier><identifier>PMID: 37902426</identifier><language>eng</language><publisher>China (Republic : 1949- ): Wiley Subscription Services, Inc</publisher><subject>Arabidopsis ; blue light ; Chromatin ; CRY1 ; CRY2 ; cryptochrome ; Cryptochromes ; DNA repair ; Gene expression ; Kinases ; Liquid phases ; mRNA ; Phase separation ; Photoreceptors ; Plant growth ; Proteins ; Splicing factors ; Transcription factors ; Ubiquitin</subject><ispartof>Journal of integrative plant biology, 2024-05, Vol.66 (5), p.883-896</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2023 The Authors. Journal of Integrative Plant Biology published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3938-170c73a8b22984840fd17ca3f80085a5f27835edf4cdb953ac4e4881bfc64e003</citedby><cites>FETCH-LOGICAL-c3938-170c73a8b22984840fd17ca3f80085a5f27835edf4cdb953ac4e4881bfc64e003</cites><orcidid>0000-0001-6686-8847 ; 0000-0003-3853-9266 ; 0000-0002-0004-8480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjipb.13578$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjipb.13578$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37902426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Gao‐Ping</creatorcontrib><creatorcontrib>Jiang, Bochen</creatorcontrib><creatorcontrib>Lin, Chentao</creatorcontrib><title>The dual‐action mechanism of Arabidopsis cryptochromes</title><title>Journal of integrative plant biology</title><addtitle>J Integr Plant Biol</addtitle><description>ABSTRACT Photoreceptor cryptochromes (CRYs) mediate blue‐light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co‐factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light‐regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini‐review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock‐and‐Key” and the “Liquid‐Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY‐interacting proteins and the functional diversity of the CRY photoreceptors. This mini‐review summarizes 84 reported cryptochrome‐interacting proteins and their main signal transduction networks, and proposes two mechanisms for cryptochrome action. In the Lock‐and‐Key mechanism, blue light‐induces a change in binding activity between cryptochromes and cryptochrome‐interacting proteins; the LLPS mechanism involves blue‐light‐induced co‐condensation of cryptochromes and cryptochrome‐interacting proteins.</description><subject>Arabidopsis</subject><subject>blue light</subject><subject>Chromatin</subject><subject>CRY1</subject><subject>CRY2</subject><subject>cryptochrome</subject><subject>Cryptochromes</subject><subject>DNA repair</subject><subject>Gene expression</subject><subject>Kinases</subject><subject>Liquid phases</subject><subject>mRNA</subject><subject>Phase separation</subject><subject>Photoreceptors</subject><subject>Plant growth</subject><subject>Proteins</subject><subject>Splicing factors</subject><subject>Transcription factors</subject><subject>Ubiquitin</subject><issn>1672-9072</issn><issn>1744-7909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90LtOwzAUBmALgWgpLDwAisSCkAK-JT4ZS8WlqBIMZbYcx1FTJXWwG6FuPALPyJPgksLAgJfj4dOvc36ETgm-IuFdL6s2vyIsEbCHhkRwHosMZ_vhnwoaZ1jQATryfokxA5zSQzRgAVBO0yGC-cJERafqz_cPpdeVXUWN0Qu1qnwT2TIaO5VXhW195SPtNu3a6oWzjfHH6KBUtTcnuzlCL3e388lDPHu6n07Gs1izjEFMBNaCKcgpzYADx2VBhFasBIwhUUlJBbDEFCXXRZ4lTGluOADJS51yEzYeoYs-t3X2tTN-LZvKa1PXamVs5yUF4AS4AAj0_A9d2s6twnaS4TQcn1K-VZe90s5670wpW1c1ym0kwXLbp9z2Kb_7DPhsF9nljSl-6U-BAZAevFW12fwTJR-nzzd96BfamH9i</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Qu, Gao‐Ping</creator><creator>Jiang, Bochen</creator><creator>Lin, Chentao</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6686-8847</orcidid><orcidid>https://orcid.org/0000-0003-3853-9266</orcidid><orcidid>https://orcid.org/0000-0002-0004-8480</orcidid></search><sort><creationdate>202405</creationdate><title>The dual‐action mechanism of Arabidopsis cryptochromes</title><author>Qu, Gao‐Ping ; Jiang, Bochen ; Lin, Chentao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3938-170c73a8b22984840fd17ca3f80085a5f27835edf4cdb953ac4e4881bfc64e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arabidopsis</topic><topic>blue light</topic><topic>Chromatin</topic><topic>CRY1</topic><topic>CRY2</topic><topic>cryptochrome</topic><topic>Cryptochromes</topic><topic>DNA repair</topic><topic>Gene expression</topic><topic>Kinases</topic><topic>Liquid phases</topic><topic>mRNA</topic><topic>Phase separation</topic><topic>Photoreceptors</topic><topic>Plant growth</topic><topic>Proteins</topic><topic>Splicing factors</topic><topic>Transcription factors</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Gao‐Ping</creatorcontrib><creatorcontrib>Jiang, Bochen</creatorcontrib><creatorcontrib>Lin, Chentao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of integrative plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Gao‐Ping</au><au>Jiang, Bochen</au><au>Lin, Chentao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dual‐action mechanism of Arabidopsis cryptochromes</atitle><jtitle>Journal of integrative plant biology</jtitle><addtitle>J Integr Plant Biol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>66</volume><issue>5</issue><spage>883</spage><epage>896</epage><pages>883-896</pages><issn>1672-9072</issn><eissn>1744-7909</eissn><abstract>ABSTRACT Photoreceptor cryptochromes (CRYs) mediate blue‐light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co‐factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light‐regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini‐review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock‐and‐Key” and the “Liquid‐Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY‐interacting proteins and the functional diversity of the CRY photoreceptors. This mini‐review summarizes 84 reported cryptochrome‐interacting proteins and their main signal transduction networks, and proposes two mechanisms for cryptochrome action. In the Lock‐and‐Key mechanism, blue light‐induces a change in binding activity between cryptochromes and cryptochrome‐interacting proteins; the LLPS mechanism involves blue‐light‐induced co‐condensation of cryptochromes and cryptochrome‐interacting proteins.</abstract><cop>China (Republic : 1949- )</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37902426</pmid><doi>10.1111/jipb.13578</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6686-8847</orcidid><orcidid>https://orcid.org/0000-0003-3853-9266</orcidid><orcidid>https://orcid.org/0000-0002-0004-8480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9072
ispartof Journal of integrative plant biology, 2024-05, Vol.66 (5), p.883-896
issn 1672-9072
1744-7909
language eng
recordid cdi_proquest_miscellaneous_2884184788
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Arabidopsis
blue light
Chromatin
CRY1
CRY2
cryptochrome
Cryptochromes
DNA repair
Gene expression
Kinases
Liquid phases
mRNA
Phase separation
Photoreceptors
Plant growth
Proteins
Splicing factors
Transcription factors
Ubiquitin
title The dual‐action mechanism of Arabidopsis cryptochromes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dual%E2%80%90action%20mechanism%20of%20Arabidopsis%20cryptochromes&rft.jtitle=Journal%20of%20integrative%20plant%20biology&rft.au=Qu,%20Gao%E2%80%90Ping&rft.date=2024-05&rft.volume=66&rft.issue=5&rft.spage=883&rft.epage=896&rft.pages=883-896&rft.issn=1672-9072&rft.eissn=1744-7909&rft_id=info:doi/10.1111/jipb.13578&rft_dat=%3Cproquest_cross%3E2884184788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060386248&rft_id=info:pmid/37902426&rfr_iscdi=true