Observations and problems applying ART2 for dynamic sensor pattern interpretation

This paper discusses characteristics of the ART2 (adaptive resonance theory) information processing model which emerge when applied to the problem of interpreting dynamic sensor data. Fast learn ART2 is employed in a supervised learning framework to classify process "fingerprints" generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 1996-07, Vol.26 (4), p.423-437
Hauptverfasser: Whiteley, J.R., Davis, J.F., Mehrotra, A., Ahalt, S.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 4
container_start_page 423
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 26
creator Whiteley, J.R.
Davis, J.F.
Mehrotra, A.
Ahalt, S.C.
description This paper discusses characteristics of the ART2 (adaptive resonance theory) information processing model which emerge when applied to the problem of interpreting dynamic sensor data. Fast learn ART2 is employed in a supervised learning framework to classify process "fingerprints" generated from multi-sensor trend patterns. Interest in ART2 was motivated by the ability to provide closed classification regions, uniform hyperspherical clusters, feature extraction, and on-line adaption. Sensor data interpretation is briefly discussed with an emphasis on the unique attributes of the problem and the interaction with ART2 information processing principles. Pattern representations, e.g., time domain, which encode information in both magnitude and direction of the input vector are shown to be fundamentally incompatible with ART2. Complement coding is shown to solve this problem when the feature extraction capability of the ART2 network is disabled. Complement coding is also shown to preserve the clustering characteristics of the process "fingerprints" which are otherwise lost using the ART2 directional similarity measure. These issues are illustrated using an ART2-based monitoring system for a dynamically simulated chemical process.
doi_str_mv 10.1109/3468.508821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28838365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>508821</ieee_id><sourcerecordid>28838365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-930b84ca0de139cff69e43d85fffb2b408331715c546af18b0fdf5ae17d880893</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRsD5W7lxl5UZS584jvVmW4gsKRanrMEnuSCSdxJlU6L93aopbXZ17uB-HA4exK-BTAJ7fSZXhVHNEAUdsAlpjKpTIjuPNUaZKidkpOwvhg3NQKlcT9rIqA_kvMzSdC4lxddL7rmxpE03ft7vGvSfz17VIbOeTeufMpqmSQC5E25thIO-SxkXpPQ0_KRfsxJo20OVBz9nbw_168ZQuV4_Pi_kyraSSQ5pLXqKqDK8JZF5Zm-WkZI3aWluKUsW-EmagK60yYwFLbmurDcGsRuSYy3N2M-bGwp9bCkOxaUJFbWscddtQCESJMtP_AAXXGcDfYMZzDYARvB3ByncheLJF75uN8bsCeLEfotgPUYxDRPp6pBsi-iUPz2-BlYN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26095118</pqid></control><display><type>article</type><title>Observations and problems applying ART2 for dynamic sensor pattern interpretation</title><source>IEEE Electronic Library (IEL)</source><creator>Whiteley, J.R. ; Davis, J.F. ; Mehrotra, A. ; Ahalt, S.C.</creator><creatorcontrib>Whiteley, J.R. ; Davis, J.F. ; Mehrotra, A. ; Ahalt, S.C.</creatorcontrib><description>This paper discusses characteristics of the ART2 (adaptive resonance theory) information processing model which emerge when applied to the problem of interpreting dynamic sensor data. Fast learn ART2 is employed in a supervised learning framework to classify process "fingerprints" generated from multi-sensor trend patterns. Interest in ART2 was motivated by the ability to provide closed classification regions, uniform hyperspherical clusters, feature extraction, and on-line adaption. Sensor data interpretation is briefly discussed with an emphasis on the unique attributes of the problem and the interaction with ART2 information processing principles. Pattern representations, e.g., time domain, which encode information in both magnitude and direction of the input vector are shown to be fundamentally incompatible with ART2. Complement coding is shown to solve this problem when the feature extraction capability of the ART2 network is disabled. Complement coding is also shown to preserve the clustering characteristics of the process "fingerprints" which are otherwise lost using the ART2 directional similarity measure. These issues are illustrated using an ART2-based monitoring system for a dynamically simulated chemical process.</description><identifier>ISSN: 1083-4427</identifier><identifier>EISSN: 1558-2426</identifier><identifier>DOI: 10.1109/3468.508821</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Chemical processes ; Feature extraction ; Humans ; Information processing ; Loss measurement ; Monitoring ; Resonance ; Sensor phenomena and characterization ; Supervised learning</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1996-07, Vol.26 (4), p.423-437</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-930b84ca0de139cff69e43d85fffb2b408331715c546af18b0fdf5ae17d880893</citedby><cites>FETCH-LOGICAL-c343t-930b84ca0de139cff69e43d85fffb2b408331715c546af18b0fdf5ae17d880893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/508821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/508821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Whiteley, J.R.</creatorcontrib><creatorcontrib>Davis, J.F.</creatorcontrib><creatorcontrib>Mehrotra, A.</creatorcontrib><creatorcontrib>Ahalt, S.C.</creatorcontrib><title>Observations and problems applying ART2 for dynamic sensor pattern interpretation</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>This paper discusses characteristics of the ART2 (adaptive resonance theory) information processing model which emerge when applied to the problem of interpreting dynamic sensor data. Fast learn ART2 is employed in a supervised learning framework to classify process "fingerprints" generated from multi-sensor trend patterns. Interest in ART2 was motivated by the ability to provide closed classification regions, uniform hyperspherical clusters, feature extraction, and on-line adaption. Sensor data interpretation is briefly discussed with an emphasis on the unique attributes of the problem and the interaction with ART2 information processing principles. Pattern representations, e.g., time domain, which encode information in both magnitude and direction of the input vector are shown to be fundamentally incompatible with ART2. Complement coding is shown to solve this problem when the feature extraction capability of the ART2 network is disabled. Complement coding is also shown to preserve the clustering characteristics of the process "fingerprints" which are otherwise lost using the ART2 directional similarity measure. These issues are illustrated using an ART2-based monitoring system for a dynamically simulated chemical process.</description><subject>Chemical engineering</subject><subject>Chemical processes</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Information processing</subject><subject>Loss measurement</subject><subject>Monitoring</subject><subject>Resonance</subject><subject>Sensor phenomena and characterization</subject><subject>Supervised learning</subject><issn>1083-4427</issn><issn>1558-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLw0AUhQdRsD5W7lxl5UZS584jvVmW4gsKRanrMEnuSCSdxJlU6L93aopbXZ17uB-HA4exK-BTAJ7fSZXhVHNEAUdsAlpjKpTIjuPNUaZKidkpOwvhg3NQKlcT9rIqA_kvMzSdC4lxddL7rmxpE03ft7vGvSfz17VIbOeTeufMpqmSQC5E25thIO-SxkXpPQ0_KRfsxJo20OVBz9nbw_168ZQuV4_Pi_kyraSSQ5pLXqKqDK8JZF5Zm-WkZI3aWluKUsW-EmagK60yYwFLbmurDcGsRuSYy3N2M-bGwp9bCkOxaUJFbWscddtQCESJMtP_AAXXGcDfYMZzDYARvB3ByncheLJF75uN8bsCeLEfotgPUYxDRPp6pBsi-iUPz2-BlYN5</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Whiteley, J.R.</creator><creator>Davis, J.F.</creator><creator>Mehrotra, A.</creator><creator>Ahalt, S.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>19960701</creationdate><title>Observations and problems applying ART2 for dynamic sensor pattern interpretation</title><author>Whiteley, J.R. ; Davis, J.F. ; Mehrotra, A. ; Ahalt, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-930b84ca0de139cff69e43d85fffb2b408331715c546af18b0fdf5ae17d880893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chemical engineering</topic><topic>Chemical processes</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Information processing</topic><topic>Loss measurement</topic><topic>Monitoring</topic><topic>Resonance</topic><topic>Sensor phenomena and characterization</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Whiteley, J.R.</creatorcontrib><creatorcontrib>Davis, J.F.</creatorcontrib><creatorcontrib>Mehrotra, A.</creatorcontrib><creatorcontrib>Ahalt, S.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Whiteley, J.R.</au><au>Davis, J.F.</au><au>Mehrotra, A.</au><au>Ahalt, S.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations and problems applying ART2 for dynamic sensor pattern interpretation</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>1996-07-01</date><risdate>1996</risdate><volume>26</volume><issue>4</issue><spage>423</spage><epage>437</epage><pages>423-437</pages><issn>1083-4427</issn><eissn>1558-2426</eissn><coden>ITSHFX</coden><abstract>This paper discusses characteristics of the ART2 (adaptive resonance theory) information processing model which emerge when applied to the problem of interpreting dynamic sensor data. Fast learn ART2 is employed in a supervised learning framework to classify process "fingerprints" generated from multi-sensor trend patterns. Interest in ART2 was motivated by the ability to provide closed classification regions, uniform hyperspherical clusters, feature extraction, and on-line adaption. Sensor data interpretation is briefly discussed with an emphasis on the unique attributes of the problem and the interaction with ART2 information processing principles. Pattern representations, e.g., time domain, which encode information in both magnitude and direction of the input vector are shown to be fundamentally incompatible with ART2. Complement coding is shown to solve this problem when the feature extraction capability of the ART2 network is disabled. Complement coding is also shown to preserve the clustering characteristics of the process "fingerprints" which are otherwise lost using the ART2 directional similarity measure. These issues are illustrated using an ART2-based monitoring system for a dynamically simulated chemical process.</abstract><pub>IEEE</pub><doi>10.1109/3468.508821</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 1996-07, Vol.26 (4), p.423-437
issn 1083-4427
1558-2426
language eng
recordid cdi_proquest_miscellaneous_28838365
source IEEE Electronic Library (IEL)
subjects Chemical engineering
Chemical processes
Feature extraction
Humans
Information processing
Loss measurement
Monitoring
Resonance
Sensor phenomena and characterization
Supervised learning
title Observations and problems applying ART2 for dynamic sensor pattern interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20and%20problems%20applying%20ART2%20for%20dynamic%20sensor%20pattern%20interpretation&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Whiteley,%20J.R.&rft.date=1996-07-01&rft.volume=26&rft.issue=4&rft.spage=423&rft.epage=437&rft.pages=423-437&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/3468.508821&rft_dat=%3Cproquest_RIE%3E28838365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26095118&rft_id=info:pmid/&rft_ieee_id=508821&rfr_iscdi=true