Heteromultivalency enables enhanced detection of nucleic acid mutations
Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2024-02, Vol.16 (2), p.229-238 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 2 |
container_start_page | 229 |
container_title | Nature chemistry |
container_volume | 16 |
creator | Deal, Brendan R. Ma, Rong Narum, Steven Ogasawara, Hiroaki Duan, Yuxin Kindt, James T. Salaita, Khalid |
description | Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous
cis
and
trans
mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains. |
doi_str_mv | 10.1038/s41557-023-01345-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883582234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923181081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRbK3-ARcScOMmOp_JdClFW6HgRtfDfGpKMqkzidB_78TUCi5cvQf3zH3DAeASwVsECb-LFDFW5hCTHCJCWU6PwBSVLC2Ezo8PO4ETcBbjBsKCEVScggkpOadFwadgubKdDW3T1131KWvr9S6zXqraxjTfpdfWZCYxuqtan7Uu872ubaUzqSuTNX0nhyCegxMn62gv9nMGXh8fXharfP28fFrcr3NNStblGBrCjMLEWkwdcoohJxWixjgmmUJII8gVnstSMQxpYah0BsshdwXUhszAzdi7De1Hb2MnmipqW9fS27aPAnNOGMeY0IRe_0E3bR98-p3Ac0wQT6dQovBI6dDGGKwT21A1MuwEgmLQLEbNImkW35rFUH21r-5VY83hyY_XBJARiCnybzb83v6n9guSAIjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923181081</pqid></control><display><type>article</type><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</creator><creatorcontrib>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</creatorcontrib><description>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous
cis
and
trans
mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-023-01345-4</identifier><identifier>PMID: 37884668</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1513/2192 ; 631/1647/1888/1890 ; 639/638/11/872 ; Affinity ; Analytical Chemistry ; Binding ; Biochemistry ; Cancer therapies ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deoxyribonucleic acid ; DNA ; DNA probes ; Genetic analysis ; Hybridization ; Inorganic Chemistry ; Mutation ; Nucleic acids ; Nucleotides ; Oligonucleotides ; Organic Chemistry ; Physical Chemistry ; Severe acute respiratory syndrome coronavirus 2 ; Single-nucleotide polymorphism ; Strains (organisms) ; Viral diseases</subject><ispartof>Nature chemistry, 2024-02, Vol.16 (2), p.229-238</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</citedby><cites>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</cites><orcidid>0000-0003-3532-2985 ; 0000-0003-4138-3477 ; 0000-0001-8462-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-023-01345-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-023-01345-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37884668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deal, Brendan R.</creatorcontrib><creatorcontrib>Ma, Rong</creatorcontrib><creatorcontrib>Narum, Steven</creatorcontrib><creatorcontrib>Ogasawara, Hiroaki</creatorcontrib><creatorcontrib>Duan, Yuxin</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><creatorcontrib>Salaita, Khalid</creatorcontrib><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous
cis
and
trans
mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</description><subject>631/1647/1513/2192</subject><subject>631/1647/1888/1890</subject><subject>639/638/11/872</subject><subject>Affinity</subject><subject>Analytical Chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Cancer therapies</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA probes</subject><subject>Genetic analysis</subject><subject>Hybridization</subject><subject>Inorganic Chemistry</subject><subject>Mutation</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Single-nucleotide polymorphism</subject><subject>Strains (organisms)</subject><subject>Viral diseases</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRbK3-ARcScOMmOp_JdClFW6HgRtfDfGpKMqkzidB_78TUCi5cvQf3zH3DAeASwVsECb-LFDFW5hCTHCJCWU6PwBSVLC2Ezo8PO4ETcBbjBsKCEVScggkpOadFwadgubKdDW3T1131KWvr9S6zXqraxjTfpdfWZCYxuqtan7Uu872ubaUzqSuTNX0nhyCegxMn62gv9nMGXh8fXharfP28fFrcr3NNStblGBrCjMLEWkwdcoohJxWixjgmmUJII8gVnstSMQxpYah0BsshdwXUhszAzdi7De1Hb2MnmipqW9fS27aPAnNOGMeY0IRe_0E3bR98-p3Ac0wQT6dQovBI6dDGGKwT21A1MuwEgmLQLEbNImkW35rFUH21r-5VY83hyY_XBJARiCnybzb83v6n9guSAIjW</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Deal, Brendan R.</creator><creator>Ma, Rong</creator><creator>Narum, Steven</creator><creator>Ogasawara, Hiroaki</creator><creator>Duan, Yuxin</creator><creator>Kindt, James T.</creator><creator>Salaita, Khalid</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3532-2985</orcidid><orcidid>https://orcid.org/0000-0003-4138-3477</orcidid><orcidid>https://orcid.org/0000-0001-8462-562X</orcidid></search><sort><creationdate>20240201</creationdate><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><author>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/1513/2192</topic><topic>631/1647/1888/1890</topic><topic>639/638/11/872</topic><topic>Affinity</topic><topic>Analytical Chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Cancer therapies</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA probes</topic><topic>Genetic analysis</topic><topic>Hybridization</topic><topic>Inorganic Chemistry</topic><topic>Mutation</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Single-nucleotide polymorphism</topic><topic>Strains (organisms)</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deal, Brendan R.</creatorcontrib><creatorcontrib>Ma, Rong</creatorcontrib><creatorcontrib>Narum, Steven</creatorcontrib><creatorcontrib>Ogasawara, Hiroaki</creatorcontrib><creatorcontrib>Duan, Yuxin</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><creatorcontrib>Salaita, Khalid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deal, Brendan R.</au><au>Ma, Rong</au><au>Narum, Steven</au><au>Ogasawara, Hiroaki</au><au>Duan, Yuxin</au><au>Kindt, James T.</au><au>Salaita, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteromultivalency enables enhanced detection of nucleic acid mutations</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous
cis
and
trans
mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37884668</pmid><doi>10.1038/s41557-023-01345-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3532-2985</orcidid><orcidid>https://orcid.org/0000-0003-4138-3477</orcidid><orcidid>https://orcid.org/0000-0001-8462-562X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2024-02, Vol.16 (2), p.229-238 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2883582234 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/1647/1513/2192 631/1647/1888/1890 639/638/11/872 Affinity Analytical Chemistry Binding Biochemistry Cancer therapies Chemistry Chemistry and Materials Science Chemistry/Food Science Deoxyribonucleic acid DNA DNA probes Genetic analysis Hybridization Inorganic Chemistry Mutation Nucleic acids Nucleotides Oligonucleotides Organic Chemistry Physical Chemistry Severe acute respiratory syndrome coronavirus 2 Single-nucleotide polymorphism Strains (organisms) Viral diseases |
title | Heteromultivalency enables enhanced detection of nucleic acid mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteromultivalency%20enables%20enhanced%20detection%20of%20nucleic%20acid%20mutations&rft.jtitle=Nature%20chemistry&rft.au=Deal,%20Brendan%20R.&rft.date=2024-02-01&rft.volume=16&rft.issue=2&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-023-01345-4&rft_dat=%3Cproquest_cross%3E2923181081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923181081&rft_id=info:pmid/37884668&rfr_iscdi=true |