Heteromultivalency enables enhanced detection of nucleic acid mutations

Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2024-02, Vol.16 (2), p.229-238
Hauptverfasser: Deal, Brendan R., Ma, Rong, Narum, Steven, Ogasawara, Hiroaki, Duan, Yuxin, Kindt, James T., Salaita, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 229
container_title Nature chemistry
container_volume 16
creator Deal, Brendan R.
Ma, Rong
Narum, Steven
Ogasawara, Hiroaki
Duan, Yuxin
Kindt, James T.
Salaita, Khalid
description Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods. Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.
doi_str_mv 10.1038/s41557-023-01345-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883582234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923181081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRbK3-ARcScOMmOp_JdClFW6HgRtfDfGpKMqkzidB_78TUCi5cvQf3zH3DAeASwVsECb-LFDFW5hCTHCJCWU6PwBSVLC2Ezo8PO4ETcBbjBsKCEVScggkpOadFwadgubKdDW3T1131KWvr9S6zXqraxjTfpdfWZCYxuqtan7Uu872ubaUzqSuTNX0nhyCegxMn62gv9nMGXh8fXharfP28fFrcr3NNStblGBrCjMLEWkwdcoohJxWixjgmmUJII8gVnstSMQxpYah0BsshdwXUhszAzdi7De1Hb2MnmipqW9fS27aPAnNOGMeY0IRe_0E3bR98-p3Ac0wQT6dQovBI6dDGGKwT21A1MuwEgmLQLEbNImkW35rFUH21r-5VY83hyY_XBJARiCnybzb83v6n9guSAIjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923181081</pqid></control><display><type>article</type><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</creator><creatorcontrib>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</creatorcontrib><description>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods. Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-023-01345-4</identifier><identifier>PMID: 37884668</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1513/2192 ; 631/1647/1888/1890 ; 639/638/11/872 ; Affinity ; Analytical Chemistry ; Binding ; Biochemistry ; Cancer therapies ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deoxyribonucleic acid ; DNA ; DNA probes ; Genetic analysis ; Hybridization ; Inorganic Chemistry ; Mutation ; Nucleic acids ; Nucleotides ; Oligonucleotides ; Organic Chemistry ; Physical Chemistry ; Severe acute respiratory syndrome coronavirus 2 ; Single-nucleotide polymorphism ; Strains (organisms) ; Viral diseases</subject><ispartof>Nature chemistry, 2024-02, Vol.16 (2), p.229-238</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</citedby><cites>FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</cites><orcidid>0000-0003-3532-2985 ; 0000-0003-4138-3477 ; 0000-0001-8462-562X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-023-01345-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-023-01345-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37884668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deal, Brendan R.</creatorcontrib><creatorcontrib>Ma, Rong</creatorcontrib><creatorcontrib>Narum, Steven</creatorcontrib><creatorcontrib>Ogasawara, Hiroaki</creatorcontrib><creatorcontrib>Duan, Yuxin</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><creatorcontrib>Salaita, Khalid</creatorcontrib><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods. Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</description><subject>631/1647/1513/2192</subject><subject>631/1647/1888/1890</subject><subject>639/638/11/872</subject><subject>Affinity</subject><subject>Analytical Chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Cancer therapies</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA probes</subject><subject>Genetic analysis</subject><subject>Hybridization</subject><subject>Inorganic Chemistry</subject><subject>Mutation</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Single-nucleotide polymorphism</subject><subject>Strains (organisms)</subject><subject>Viral diseases</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRbK3-ARcScOMmOp_JdClFW6HgRtfDfGpKMqkzidB_78TUCi5cvQf3zH3DAeASwVsECb-LFDFW5hCTHCJCWU6PwBSVLC2Ezo8PO4ETcBbjBsKCEVScggkpOadFwadgubKdDW3T1131KWvr9S6zXqraxjTfpdfWZCYxuqtan7Uu872ubaUzqSuTNX0nhyCegxMn62gv9nMGXh8fXharfP28fFrcr3NNStblGBrCjMLEWkwdcoohJxWixjgmmUJII8gVnstSMQxpYah0BsshdwXUhszAzdi7De1Hb2MnmipqW9fS27aPAnNOGMeY0IRe_0E3bR98-p3Ac0wQT6dQovBI6dDGGKwT21A1MuwEgmLQLEbNImkW35rFUH21r-5VY83hyY_XBJARiCnybzb83v6n9guSAIjW</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Deal, Brendan R.</creator><creator>Ma, Rong</creator><creator>Narum, Steven</creator><creator>Ogasawara, Hiroaki</creator><creator>Duan, Yuxin</creator><creator>Kindt, James T.</creator><creator>Salaita, Khalid</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3532-2985</orcidid><orcidid>https://orcid.org/0000-0003-4138-3477</orcidid><orcidid>https://orcid.org/0000-0001-8462-562X</orcidid></search><sort><creationdate>20240201</creationdate><title>Heteromultivalency enables enhanced detection of nucleic acid mutations</title><author>Deal, Brendan R. ; Ma, Rong ; Narum, Steven ; Ogasawara, Hiroaki ; Duan, Yuxin ; Kindt, James T. ; Salaita, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-20d35db23ee24f1fb51fab14ddf5a5b11c108b29a7b52046d4afd2a4ddff60cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/1513/2192</topic><topic>631/1647/1888/1890</topic><topic>639/638/11/872</topic><topic>Affinity</topic><topic>Analytical Chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Cancer therapies</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA probes</topic><topic>Genetic analysis</topic><topic>Hybridization</topic><topic>Inorganic Chemistry</topic><topic>Mutation</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Single-nucleotide polymorphism</topic><topic>Strains (organisms)</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deal, Brendan R.</creatorcontrib><creatorcontrib>Ma, Rong</creatorcontrib><creatorcontrib>Narum, Steven</creatorcontrib><creatorcontrib>Ogasawara, Hiroaki</creatorcontrib><creatorcontrib>Duan, Yuxin</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><creatorcontrib>Salaita, Khalid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deal, Brendan R.</au><au>Ma, Rong</au><au>Narum, Steven</au><au>Ogasawara, Hiroaki</au><au>Duan, Yuxin</au><au>Kindt, James T.</au><au>Salaita, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteromultivalency enables enhanced detection of nucleic acid mutations</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe’s binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods. Detecting genetic mutations, such as single nucleotide polymorphisms (SNPs), is essential for disease diagnostics but can be difficult using homomultivalent DNA hybridization-based approaches. Now, heteromultivalent hybridization is used to fine-tune binding specificity for the detection of one or two SNPs in a single target, enabling straightforward discrimination between adjacent and distant mutations and different viral strains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37884668</pmid><doi>10.1038/s41557-023-01345-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3532-2985</orcidid><orcidid>https://orcid.org/0000-0003-4138-3477</orcidid><orcidid>https://orcid.org/0000-0001-8462-562X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2024-02, Vol.16 (2), p.229-238
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2883582234
source Nature; SpringerLink Journals - AutoHoldings
subjects 631/1647/1513/2192
631/1647/1888/1890
639/638/11/872
Affinity
Analytical Chemistry
Binding
Biochemistry
Cancer therapies
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deoxyribonucleic acid
DNA
DNA probes
Genetic analysis
Hybridization
Inorganic Chemistry
Mutation
Nucleic acids
Nucleotides
Oligonucleotides
Organic Chemistry
Physical Chemistry
Severe acute respiratory syndrome coronavirus 2
Single-nucleotide polymorphism
Strains (organisms)
Viral diseases
title Heteromultivalency enables enhanced detection of nucleic acid mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteromultivalency%20enables%20enhanced%20detection%20of%20nucleic%20acid%20mutations&rft.jtitle=Nature%20chemistry&rft.au=Deal,%20Brendan%20R.&rft.date=2024-02-01&rft.volume=16&rft.issue=2&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-023-01345-4&rft_dat=%3Cproquest_cross%3E2923181081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923181081&rft_id=info:pmid/37884668&rfr_iscdi=true