Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage

We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-10, Vol.131 (15), p.150601-150601, Article 150601
Hauptverfasser: Deng, Yu-Hao, Gu, Yi-Chao, Liu, Hua-Liang, Gong, Si-Qiu, Su, Hao, Zhang, Zhi-Jiong, Tang, Hao-Yang, Jia, Meng-Hao, Xu, Jia-Min, Chen, Ming-Cheng, Qin, Jian, Peng, Li-Chao, Yan, Jiarong, Hu, Yi, Huang, Jia, Li, Hao, Li, Yuxuan, Chen, Yaojian, Jiang, Xiao, Gan, Lin, Yang, Guangwen, You, Lixing, Li, Li, Zhong, Han-Sen, Wang, Hui, Liu, Nai-Le, Renema, Jelmer J., Lu, Chao-Yang, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ∼600  yr using exact methods, whereas our quantum computer, Jiǔzhāng 3.0, takes only 1.27  μs to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier∼3.1×10^{10}  yr.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.131.150601