Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes

With increasing ecological and environmental concerns, tin (Sn)‐based perovskite light‐emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low‐cost solution‐processed fabrication. Nonetheless, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-12, Vol.62 (50), p.e202312728-n/a
Hauptverfasser: Bai, Wenhao, Liang, Mingming, Xuan, Tongtong, Gong, Ting, Bian, Liang, Li, Huili, Xie, Rong‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e202312728
container_title Angewandte Chemie International Edition
container_volume 62
creator Bai, Wenhao
Liang, Mingming
Xuan, Tongtong
Gong, Ting
Bian, Liang
Li, Huili
Xie, Rong‐Jun
description With increasing ecological and environmental concerns, tin (Sn)‐based perovskite light‐emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low‐cost solution‐processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)‐based PeLEDs due to the fast crystallization rate of Sn‐based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high‐quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L‐glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4‐based PeLEDs. We show that the hydrogen‐bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state‐of‐the‐art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4‐based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn‐based PeLEDs. The performance of eco‐friendly PEA2SnI4 perovskite light‐emitting diodes (PeLEDs) lags far behind that of lead‐based PeLEDs. We demonstrated a ligand engineering strategy that uses GSH as a surface ligand to strongly interact with I− and Sn2+ in perovskites, which thus reduces the film crystallization rate and suppresses the oxidation of Sn2+ ions. Pure red PeLEDs based on the modified PEA2SnI4 achieve a record EQEmax of 9.32 %.
doi_str_mv 10.1002/anie.202312728
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883577933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898378135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-11021f61628ae09833a54c2d42bfe9092691a5e1492fbefbc28b6d61b726cafd3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMkdiYUnxTxM7YykBKlWAUNmQLCe5Li6pU-wE1I1H4Bl5ElwVgcTC5CP5O-feexA6JnhAMKZnyhoYUEwZoZyKHdQjCSUx45ztBj1kLOYiIfvowPtF4IXAaQ89Ts1c2SrK7dxYAGfsPGhV1OCjXGtTGrBtdNc5iO6himbGfr5_nCsf9B245tU_mxaiEPLUho98adp2E3Fhmgr8IdrTqvZw9P320cNlPhtfx9Pbq8l4NI1LlmARE4Ip0SlJqVCAM8GYSoYlrYa00JDhjKYZUQmQYUZ1AbooqSjSKiUFp2mpdMX66HSbu3LNSwe-lUvjS6hrZaHpvAy3soTzjLGAnvxBF03nbNguUGE0F4QlgRpsqdI13jvQcuXMUrm1JFhuypabsuVP2cGQbQ1vpob1P7Qc3UzyX-8XnwKENw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898378135</pqid></control><display><type>article</type><title>Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes</title><source>Access via Wiley Online Library</source><creator>Bai, Wenhao ; Liang, Mingming ; Xuan, Tongtong ; Gong, Ting ; Bian, Liang ; Li, Huili ; Xie, Rong‐Jun</creator><creatorcontrib>Bai, Wenhao ; Liang, Mingming ; Xuan, Tongtong ; Gong, Ting ; Bian, Liang ; Li, Huili ; Xie, Rong‐Jun</creatorcontrib><description>With increasing ecological and environmental concerns, tin (Sn)‐based perovskite light‐emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low‐cost solution‐processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)‐based PeLEDs due to the fast crystallization rate of Sn‐based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high‐quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L‐glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4‐based PeLEDs. We show that the hydrogen‐bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state‐of‐the‐art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4‐based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn‐based PeLEDs. The performance of eco‐friendly PEA2SnI4 perovskite light‐emitting diodes (PeLEDs) lags far behind that of lead‐based PeLEDs. We demonstrated a ligand engineering strategy that uses GSH as a surface ligand to strongly interact with I− and Sn2+ in perovskites, which thus reduces the film crystallization rate and suppresses the oxidation of Sn2+ ions. Pure red PeLEDs based on the modified PEA2SnI4 achieve a record EQEmax of 9.32 %.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202312728</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Crystal defects ; Crystallization ; Density ; Electroluminescence ; Engineering ; Fabrication ; Glutathione ; Iodides ; Lead ; Lead-Free ; Ligands ; Light emitting diodes ; Light-Emitting Diode ; Optical properties ; Oxidation ; Perovskite ; Perovskites ; Photoelectric effect ; Photoelectric properties ; Photoelectricity ; Pure-Red ; Quantum efficiency ; Tin</subject><ispartof>Angewandte Chemie International Edition, 2023-12, Vol.62 (50), p.e202312728-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-11021f61628ae09833a54c2d42bfe9092691a5e1492fbefbc28b6d61b726cafd3</citedby><cites>FETCH-LOGICAL-c3508-11021f61628ae09833a54c2d42bfe9092691a5e1492fbefbc28b6d61b726cafd3</cites><orcidid>0000-0002-9176-7826 ; 0000-0002-8387-1316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202312728$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202312728$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Bai, Wenhao</creatorcontrib><creatorcontrib>Liang, Mingming</creatorcontrib><creatorcontrib>Xuan, Tongtong</creatorcontrib><creatorcontrib>Gong, Ting</creatorcontrib><creatorcontrib>Bian, Liang</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Xie, Rong‐Jun</creatorcontrib><title>Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes</title><title>Angewandte Chemie International Edition</title><description>With increasing ecological and environmental concerns, tin (Sn)‐based perovskite light‐emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low‐cost solution‐processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)‐based PeLEDs due to the fast crystallization rate of Sn‐based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high‐quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L‐glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4‐based PeLEDs. We show that the hydrogen‐bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state‐of‐the‐art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4‐based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn‐based PeLEDs. The performance of eco‐friendly PEA2SnI4 perovskite light‐emitting diodes (PeLEDs) lags far behind that of lead‐based PeLEDs. We demonstrated a ligand engineering strategy that uses GSH as a surface ligand to strongly interact with I− and Sn2+ in perovskites, which thus reduces the film crystallization rate and suppresses the oxidation of Sn2+ ions. Pure red PeLEDs based on the modified PEA2SnI4 achieve a record EQEmax of 9.32 %.</description><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Density</subject><subject>Electroluminescence</subject><subject>Engineering</subject><subject>Fabrication</subject><subject>Glutathione</subject><subject>Iodides</subject><subject>Lead</subject><subject>Lead-Free</subject><subject>Ligands</subject><subject>Light emitting diodes</subject><subject>Light-Emitting Diode</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric properties</subject><subject>Photoelectricity</subject><subject>Pure-Red</subject><subject>Quantum efficiency</subject><subject>Tin</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMkdiYUnxTxM7YykBKlWAUNmQLCe5Li6pU-wE1I1H4Bl5ElwVgcTC5CP5O-feexA6JnhAMKZnyhoYUEwZoZyKHdQjCSUx45ztBj1kLOYiIfvowPtF4IXAaQ89Ts1c2SrK7dxYAGfsPGhV1OCjXGtTGrBtdNc5iO6himbGfr5_nCsf9B245tU_mxaiEPLUho98adp2E3Fhmgr8IdrTqvZw9P320cNlPhtfx9Pbq8l4NI1LlmARE4Ip0SlJqVCAM8GYSoYlrYa00JDhjKYZUQmQYUZ1AbooqSjSKiUFp2mpdMX66HSbu3LNSwe-lUvjS6hrZaHpvAy3soTzjLGAnvxBF03nbNguUGE0F4QlgRpsqdI13jvQcuXMUrm1JFhuypabsuVP2cGQbQ1vpob1P7Qc3UzyX-8XnwKENw</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Bai, Wenhao</creator><creator>Liang, Mingming</creator><creator>Xuan, Tongtong</creator><creator>Gong, Ting</creator><creator>Bian, Liang</creator><creator>Li, Huili</creator><creator>Xie, Rong‐Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9176-7826</orcidid><orcidid>https://orcid.org/0000-0002-8387-1316</orcidid></search><sort><creationdate>20231211</creationdate><title>Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes</title><author>Bai, Wenhao ; Liang, Mingming ; Xuan, Tongtong ; Gong, Ting ; Bian, Liang ; Li, Huili ; Xie, Rong‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-11021f61628ae09833a54c2d42bfe9092691a5e1492fbefbc28b6d61b726cafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Density</topic><topic>Electroluminescence</topic><topic>Engineering</topic><topic>Fabrication</topic><topic>Glutathione</topic><topic>Iodides</topic><topic>Lead</topic><topic>Lead-Free</topic><topic>Ligands</topic><topic>Light emitting diodes</topic><topic>Light-Emitting Diode</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric properties</topic><topic>Photoelectricity</topic><topic>Pure-Red</topic><topic>Quantum efficiency</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Wenhao</creatorcontrib><creatorcontrib>Liang, Mingming</creatorcontrib><creatorcontrib>Xuan, Tongtong</creatorcontrib><creatorcontrib>Gong, Ting</creatorcontrib><creatorcontrib>Bian, Liang</creatorcontrib><creatorcontrib>Li, Huili</creatorcontrib><creatorcontrib>Xie, Rong‐Jun</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Wenhao</au><au>Liang, Mingming</au><au>Xuan, Tongtong</au><au>Gong, Ting</au><au>Bian, Liang</au><au>Li, Huili</au><au>Xie, Rong‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>62</volume><issue>50</issue><spage>e202312728</spage><epage>n/a</epage><pages>e202312728-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>With increasing ecological and environmental concerns, tin (Sn)‐based perovskite light‐emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low‐cost solution‐processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)‐based PeLEDs due to the fast crystallization rate of Sn‐based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high‐quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L‐glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4‐based PeLEDs. We show that the hydrogen‐bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state‐of‐the‐art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4‐based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn‐based PeLEDs. The performance of eco‐friendly PEA2SnI4 perovskite light‐emitting diodes (PeLEDs) lags far behind that of lead‐based PeLEDs. We demonstrated a ligand engineering strategy that uses GSH as a surface ligand to strongly interact with I− and Sn2+ in perovskites, which thus reduces the film crystallization rate and suppresses the oxidation of Sn2+ ions. Pure red PeLEDs based on the modified PEA2SnI4 achieve a record EQEmax of 9.32 %.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202312728</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9176-7826</orcidid><orcidid>https://orcid.org/0000-0002-8387-1316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-12, Vol.62 (50), p.e202312728-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2883577933
source Access via Wiley Online Library
subjects Crystal defects
Crystallization
Density
Electroluminescence
Engineering
Fabrication
Glutathione
Iodides
Lead
Lead-Free
Ligands
Light emitting diodes
Light-Emitting Diode
Optical properties
Oxidation
Perovskite
Perovskites
Photoelectric effect
Photoelectric properties
Photoelectricity
Pure-Red
Quantum efficiency
Tin
title Ligand Engineering Enables Efficient Pure Red Tin‐Based Perovskite Light‐Emitting Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand%20Engineering%20Enables%20Efficient%20Pure%20Red%20Tin%E2%80%90Based%20Perovskite%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Bai,%20Wenhao&rft.date=2023-12-11&rft.volume=62&rft.issue=50&rft.spage=e202312728&rft.epage=n/a&rft.pages=e202312728-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202312728&rft_dat=%3Cproquest_cross%3E2898378135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898378135&rft_id=info:pmid/&rfr_iscdi=true