How deep is the brain? The shallow brain hypothesis

Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Neuroscience 2023-12, Vol.24 (12), p.778-791
Hauptverfasser: Suzuki, Mototaka, Pennartz, Cyriel M. A., Aru, Jaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 12
container_start_page 778
container_title Nature reviews. Neuroscience
container_volume 24
creator Suzuki, Mototaka
Pennartz, Cyriel M. A.
Aru, Jaan
description Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today’s dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities. Architectures in neural networks commonly assume that inference is hierarchical. In this Perspective, Suzuki et al. present the shallow brain hypothesis, a neural processing mechanism based on neuroanatomical and electrophysiological evidence that intertwines hierarchical cortical processing with a massively parallel process to which subcortical areas substantially contribute.
doi_str_mv 10.1038/s41583-023-00756-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883577408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890583573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-24a360074acdeb39ab4cb2c438d4eaccee022b6e58a80d08592838e58b104623</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEYjB4AQ6oEhcuhSRO2vSE0AQMaRKXHbhFaZqxTl1bklVoe3q8dQyJAwfLdvz5j_UTcsXoHaOg7oNgUkFMOQZNZRJvjsgZEynDVqjjQw3vA3IewoJSlrA0OSUDSFXGIFNnBMbNV1Q410ZliFZzF-XelPVDNMUyzE1V4Xj3FM3XbYNAKMMFOZmZKrjLfR6S6fPTdDSOJ28vr6PHSWwhlauYCwMJHiaMLVwOmcmFzbkVoArhjLXOUc7zxEllFC2okhlXoLDNGRUJhyG57WVb33x2Lqz0sgzWVZWpXdMFzZUCmaaCKkRv_qCLpvM1HodURuUWBKR4T1nfhODdTLe-XBq_1ozqraO6d1Sjo3rnqN7g0vVeusuXrjis_FiIAPRAwFH94fzv3__IfgNztn-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890583573</pqid></control><display><type>article</type><title>How deep is the brain? The shallow brain hypothesis</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Suzuki, Mototaka ; Pennartz, Cyriel M. A. ; Aru, Jaan</creator><creatorcontrib>Suzuki, Mototaka ; Pennartz, Cyriel M. A. ; Aru, Jaan</creatorcontrib><description>Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today’s dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities. Architectures in neural networks commonly assume that inference is hierarchical. In this Perspective, Suzuki et al. present the shallow brain hypothesis, a neural processing mechanism based on neuroanatomical and electrophysiological evidence that intertwines hierarchical cortical processing with a massively parallel process to which subcortical areas substantially contribute.</description><identifier>ISSN: 1471-003X</identifier><identifier>EISSN: 1471-0048</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/s41583-023-00756-z</identifier><identifier>PMID: 37891398</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116 ; 631/378/2629 ; 631/378/3920 ; 631/443/376 ; Anatomy ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain architecture ; Computational neuroscience ; Deep learning ; Hypotheses ; Information processing ; Neural coding ; Neural networks ; Neurobiology ; Neurosciences ; Perspective</subject><ispartof>Nature reviews. Neuroscience, 2023-12, Vol.24 (12), p.778-791</ispartof><rights>Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-24a360074acdeb39ab4cb2c438d4eaccee022b6e58a80d08592838e58b104623</citedby><cites>FETCH-LOGICAL-c375t-24a360074acdeb39ab4cb2c438d4eaccee022b6e58a80d08592838e58b104623</cites><orcidid>0000-0001-8328-1175 ; 0000-0002-2151-4882 ; 0000-0003-3927-452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37891398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Mototaka</creatorcontrib><creatorcontrib>Pennartz, Cyriel M. A.</creatorcontrib><creatorcontrib>Aru, Jaan</creatorcontrib><title>How deep is the brain? The shallow brain hypothesis</title><title>Nature reviews. Neuroscience</title><addtitle>Nat. Rev. Neurosci</addtitle><addtitle>Nat Rev Neurosci</addtitle><description>Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today’s dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities. Architectures in neural networks commonly assume that inference is hierarchical. In this Perspective, Suzuki et al. present the shallow brain hypothesis, a neural processing mechanism based on neuroanatomical and electrophysiological evidence that intertwines hierarchical cortical processing with a massively parallel process to which subcortical areas substantially contribute.</description><subject>631/378/116</subject><subject>631/378/2629</subject><subject>631/378/3920</subject><subject>631/443/376</subject><subject>Anatomy</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Computational neuroscience</subject><subject>Deep learning</subject><subject>Hypotheses</subject><subject>Information processing</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Perspective</subject><issn>1471-003X</issn><issn>1471-0048</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFOwzAMhiMEYjB4AQ6oEhcuhSRO2vSE0AQMaRKXHbhFaZqxTl1bklVoe3q8dQyJAwfLdvz5j_UTcsXoHaOg7oNgUkFMOQZNZRJvjsgZEynDVqjjQw3vA3IewoJSlrA0OSUDSFXGIFNnBMbNV1Q410ZliFZzF-XelPVDNMUyzE1V4Xj3FM3XbYNAKMMFOZmZKrjLfR6S6fPTdDSOJ28vr6PHSWwhlauYCwMJHiaMLVwOmcmFzbkVoArhjLXOUc7zxEllFC2okhlXoLDNGRUJhyG57WVb33x2Lqz0sgzWVZWpXdMFzZUCmaaCKkRv_qCLpvM1HodURuUWBKR4T1nfhODdTLe-XBq_1ozqraO6d1Sjo3rnqN7g0vVeusuXrjis_FiIAPRAwFH94fzv3__IfgNztn-e</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Suzuki, Mototaka</creator><creator>Pennartz, Cyriel M. A.</creator><creator>Aru, Jaan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8328-1175</orcidid><orcidid>https://orcid.org/0000-0002-2151-4882</orcidid><orcidid>https://orcid.org/0000-0003-3927-452X</orcidid></search><sort><creationdate>20231201</creationdate><title>How deep is the brain? The shallow brain hypothesis</title><author>Suzuki, Mototaka ; Pennartz, Cyriel M. A. ; Aru, Jaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-24a360074acdeb39ab4cb2c438d4eaccee022b6e58a80d08592838e58b104623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/378/116</topic><topic>631/378/2629</topic><topic>631/378/3920</topic><topic>631/443/376</topic><topic>Anatomy</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Computational neuroscience</topic><topic>Deep learning</topic><topic>Hypotheses</topic><topic>Information processing</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Perspective</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Mototaka</creatorcontrib><creatorcontrib>Pennartz, Cyriel M. A.</creatorcontrib><creatorcontrib>Aru, Jaan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Mototaka</au><au>Pennartz, Cyriel M. A.</au><au>Aru, Jaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How deep is the brain? The shallow brain hypothesis</atitle><jtitle>Nature reviews. Neuroscience</jtitle><stitle>Nat. Rev. Neurosci</stitle><addtitle>Nat Rev Neurosci</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>24</volume><issue>12</issue><spage>778</spage><epage>791</epage><pages>778-791</pages><issn>1471-003X</issn><eissn>1471-0048</eissn><eissn>1469-3178</eissn><abstract>Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today’s dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities. Architectures in neural networks commonly assume that inference is hierarchical. In this Perspective, Suzuki et al. present the shallow brain hypothesis, a neural processing mechanism based on neuroanatomical and electrophysiological evidence that intertwines hierarchical cortical processing with a massively parallel process to which subcortical areas substantially contribute.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37891398</pmid><doi>10.1038/s41583-023-00756-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8328-1175</orcidid><orcidid>https://orcid.org/0000-0002-2151-4882</orcidid><orcidid>https://orcid.org/0000-0003-3927-452X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1471-003X
ispartof Nature reviews. Neuroscience, 2023-12, Vol.24 (12), p.778-791
issn 1471-003X
1471-0048
1469-3178
language eng
recordid cdi_proquest_miscellaneous_2883577408
source Nature; Alma/SFX Local Collection
subjects 631/378/116
631/378/2629
631/378/3920
631/443/376
Anatomy
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain
Brain architecture
Computational neuroscience
Deep learning
Hypotheses
Information processing
Neural coding
Neural networks
Neurobiology
Neurosciences
Perspective
title How deep is the brain? The shallow brain hypothesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20deep%20is%20the%20brain?%20The%20shallow%20brain%20hypothesis&rft.jtitle=Nature%20reviews.%20Neuroscience&rft.au=Suzuki,%20Mototaka&rft.date=2023-12-01&rft.volume=24&rft.issue=12&rft.spage=778&rft.epage=791&rft.pages=778-791&rft.issn=1471-003X&rft.eissn=1471-0048&rft_id=info:doi/10.1038/s41583-023-00756-z&rft_dat=%3Cproquest_cross%3E2890583573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890583573&rft_id=info:pmid/37891398&rfr_iscdi=true