Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite

Although some types of TiO2 powders and gel-derived films can exhibit bioactivity, plasma-sprayed TiO2 coatings are always bioinert, thereby hampering wider applications in bone implants. We have successfully produced a bioactive nanostructured TiO2 surface with grain size smaller than 50 nm using n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2005-11, Vol.26 (31), p.6143-6150
Hauptverfasser: Liu, Xuanyong, Zhao, Xiaobing, Fu, Ricky K.Y., Ho, Joan P.Y., Ding, Chuanxian, Chu, Paul K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6150
container_issue 31
container_start_page 6143
container_title Biomaterials
container_volume 26
creator Liu, Xuanyong
Zhao, Xiaobing
Fu, Ricky K.Y.
Ho, Joan P.Y.
Ding, Chuanxian
Chu, Paul K.
description Although some types of TiO2 powders and gel-derived films can exhibit bioactivity, plasma-sprayed TiO2 coatings are always bioinert, thereby hampering wider applications in bone implants. We have successfully produced a bioactive nanostructured TiO2 surface with grain size smaller than 50 nm using nanoparticle plasma spraying followed by hydrogen plasma immersion ion implantation (PHI). The hydrogen PHI nano-TiO2 coating can induce bone-like apatite formation on its surface after immersion in a simulated body fluid. In contrast, apatite cannot form on either the as-sprayed TiO2 surfaces (both < 50 nm grain size and > 50 nm grain size) or hydrogen-implanted TiO2 with grain size larger than 50 nm. Hence, both a hydrogenated surface that gives rise to negatively charged functional groups on the surface and small grain size ( < 50 nm) that enhances surface adsorption are crucial to the growth of apatite. Introduction of surface bioactivity to plasma-sprayed TiO2 coatings, which are generally recognized to have excellent biocompatibility and corrosion resistance as well as high bonding to titanium alloys, makes them more superior than many current biomedical coatings.
doi_str_mv 10.1016/j.biomaterials.2005.04.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28829027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28829027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-35edba500548287b3b7071d9af1d6e78b7211fcb1c53c0ea6f9d70984b61cb5d3</originalsourceid><addsrcrecordid>eNpNkE9LxDAUxHNQcF39DsWDt9aXpG1ab7L4DxZWZD2HJE3WlLapSYr47c2yHjwNAzPvDT-EbjAUGHB91xfSulFE7a0YQkEAqgLKAmh1hlaAS5K3NSYX6DKEHpKHkqzQ-9sgwijy6HVqdtkkJheiX1RcfLJ7uyNZWLwRSiedZ-ejnQ7Z8ZMddbQqO3j3HT8zZzIxi2ijvkLnJg3Q13-6Rh9Pj_vNS77dPb9uHra5ojXEnFa6k6JKK8uGNExSyYDhrhUGd7VmjWQEY6MkVhVVoEVt2o5B25SyxkpWHV2j29Pd2buvRYfIRxuUHgYxabcETpqGtEBYCt6fgsq7ELw2fPZ2FP6HY-BHdLzn_9HxIzoOJU_o6C_7M2rV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28829027</pqid></control><display><type>article</type><title>Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xuanyong ; Zhao, Xiaobing ; Fu, Ricky K.Y. ; Ho, Joan P.Y. ; Ding, Chuanxian ; Chu, Paul K.</creator><creatorcontrib>Liu, Xuanyong ; Zhao, Xiaobing ; Fu, Ricky K.Y. ; Ho, Joan P.Y. ; Ding, Chuanxian ; Chu, Paul K.</creatorcontrib><description>Although some types of TiO2 powders and gel-derived films can exhibit bioactivity, plasma-sprayed TiO2 coatings are always bioinert, thereby hampering wider applications in bone implants. We have successfully produced a bioactive nanostructured TiO2 surface with grain size smaller than 50 nm using nanoparticle plasma spraying followed by hydrogen plasma immersion ion implantation (PHI). The hydrogen PHI nano-TiO2 coating can induce bone-like apatite formation on its surface after immersion in a simulated body fluid. In contrast, apatite cannot form on either the as-sprayed TiO2 surfaces (both &lt; 50 nm grain size and &gt; 50 nm grain size) or hydrogen-implanted TiO2 with grain size larger than 50 nm. Hence, both a hydrogenated surface that gives rise to negatively charged functional groups on the surface and small grain size ( &lt; 50 nm) that enhances surface adsorption are crucial to the growth of apatite. Introduction of surface bioactivity to plasma-sprayed TiO2 coatings, which are generally recognized to have excellent biocompatibility and corrosion resistance as well as high bonding to titanium alloys, makes them more superior than many current biomedical coatings.</description><identifier>ISSN: 0142-9612</identifier><identifier>DOI: 10.1016/j.biomaterials.2005.04.035</identifier><language>eng</language><ispartof>Biomaterials, 2005-11, Vol.26 (31), p.6143-6150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-35edba500548287b3b7071d9af1d6e78b7211fcb1c53c0ea6f9d70984b61cb5d3</citedby><cites>FETCH-LOGICAL-c360t-35edba500548287b3b7071d9af1d6e78b7211fcb1c53c0ea6f9d70984b61cb5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Zhao, Xiaobing</creatorcontrib><creatorcontrib>Fu, Ricky K.Y.</creatorcontrib><creatorcontrib>Ho, Joan P.Y.</creatorcontrib><creatorcontrib>Ding, Chuanxian</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><title>Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite</title><title>Biomaterials</title><description>Although some types of TiO2 powders and gel-derived films can exhibit bioactivity, plasma-sprayed TiO2 coatings are always bioinert, thereby hampering wider applications in bone implants. We have successfully produced a bioactive nanostructured TiO2 surface with grain size smaller than 50 nm using nanoparticle plasma spraying followed by hydrogen plasma immersion ion implantation (PHI). The hydrogen PHI nano-TiO2 coating can induce bone-like apatite formation on its surface after immersion in a simulated body fluid. In contrast, apatite cannot form on either the as-sprayed TiO2 surfaces (both &lt; 50 nm grain size and &gt; 50 nm grain size) or hydrogen-implanted TiO2 with grain size larger than 50 nm. Hence, both a hydrogenated surface that gives rise to negatively charged functional groups on the surface and small grain size ( &lt; 50 nm) that enhances surface adsorption are crucial to the growth of apatite. Introduction of surface bioactivity to plasma-sprayed TiO2 coatings, which are generally recognized to have excellent biocompatibility and corrosion resistance as well as high bonding to titanium alloys, makes them more superior than many current biomedical coatings.</description><issn>0142-9612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAUxHNQcF39DsWDt9aXpG1ab7L4DxZWZD2HJE3WlLapSYr47c2yHjwNAzPvDT-EbjAUGHB91xfSulFE7a0YQkEAqgLKAmh1hlaAS5K3NSYX6DKEHpKHkqzQ-9sgwijy6HVqdtkkJheiX1RcfLJ7uyNZWLwRSiedZ-ejnQ7Z8ZMddbQqO3j3HT8zZzIxi2ijvkLnJg3Q13-6Rh9Pj_vNS77dPb9uHra5ojXEnFa6k6JKK8uGNExSyYDhrhUGd7VmjWQEY6MkVhVVoEVt2o5B25SyxkpWHV2j29Pd2buvRYfIRxuUHgYxabcETpqGtEBYCt6fgsq7ELw2fPZ2FP6HY-BHdLzn_9HxIzoOJU_o6C_7M2rV</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Liu, Xuanyong</creator><creator>Zhao, Xiaobing</creator><creator>Fu, Ricky K.Y.</creator><creator>Ho, Joan P.Y.</creator><creator>Ding, Chuanxian</creator><creator>Chu, Paul K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>200511</creationdate><title>Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite</title><author>Liu, Xuanyong ; Zhao, Xiaobing ; Fu, Ricky K.Y. ; Ho, Joan P.Y. ; Ding, Chuanxian ; Chu, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-35edba500548287b3b7071d9af1d6e78b7211fcb1c53c0ea6f9d70984b61cb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuanyong</creatorcontrib><creatorcontrib>Zhao, Xiaobing</creatorcontrib><creatorcontrib>Fu, Ricky K.Y.</creatorcontrib><creatorcontrib>Ho, Joan P.Y.</creatorcontrib><creatorcontrib>Ding, Chuanxian</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuanyong</au><au>Zhao, Xiaobing</au><au>Fu, Ricky K.Y.</au><au>Ho, Joan P.Y.</au><au>Ding, Chuanxian</au><au>Chu, Paul K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite</atitle><jtitle>Biomaterials</jtitle><date>2005-11</date><risdate>2005</risdate><volume>26</volume><issue>31</issue><spage>6143</spage><epage>6150</epage><pages>6143-6150</pages><issn>0142-9612</issn><abstract>Although some types of TiO2 powders and gel-derived films can exhibit bioactivity, plasma-sprayed TiO2 coatings are always bioinert, thereby hampering wider applications in bone implants. We have successfully produced a bioactive nanostructured TiO2 surface with grain size smaller than 50 nm using nanoparticle plasma spraying followed by hydrogen plasma immersion ion implantation (PHI). The hydrogen PHI nano-TiO2 coating can induce bone-like apatite formation on its surface after immersion in a simulated body fluid. In contrast, apatite cannot form on either the as-sprayed TiO2 surfaces (both &lt; 50 nm grain size and &gt; 50 nm grain size) or hydrogen-implanted TiO2 with grain size larger than 50 nm. Hence, both a hydrogenated surface that gives rise to negatively charged functional groups on the surface and small grain size ( &lt; 50 nm) that enhances surface adsorption are crucial to the growth of apatite. Introduction of surface bioactivity to plasma-sprayed TiO2 coatings, which are generally recognized to have excellent biocompatibility and corrosion resistance as well as high bonding to titanium alloys, makes them more superior than many current biomedical coatings.</abstract><doi>10.1016/j.biomaterials.2005.04.035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2005-11, Vol.26 (31), p.6143-6150
issn 0142-9612
language eng
recordid cdi_proquest_miscellaneous_28829027
source Elsevier ScienceDirect Journals
title Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-treated%20nanostructured%20TiO2%20surface%20supporting%20biomimetic%20growth%20of%20apatite&rft.jtitle=Biomaterials&rft.au=Liu,%20Xuanyong&rft.date=2005-11&rft.volume=26&rft.issue=31&rft.spage=6143&rft.epage=6150&rft.pages=6143-6150&rft.issn=0142-9612&rft_id=info:doi/10.1016/j.biomaterials.2005.04.035&rft_dat=%3Cproquest_cross%3E28829027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28829027&rft_id=info:pmid/&rfr_iscdi=true