Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ

Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-11, Vol.63 (21), p.6912-6924
Hauptverfasser: Cheng, Zixuan, Hwang, Siaw San, Bhave, Mrinal, Rahman, Taufiq, Chee Wezen, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6924
container_issue 21
container_start_page 6912
container_title Journal of chemical information and modeling
container_volume 63
creator Cheng, Zixuan
Hwang, Siaw San
Bhave, Mrinal
Rahman, Taufiq
Chee Wezen, Xavier
description Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.
doi_str_mv 10.1021/acs.jcim.3c01252
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882325292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882325292</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</originalsourceid><addsrcrecordid>eNp1kclOwzAURS0EYijsWSFLbFiQ4qFxnCWUoRVFzBK7yLEdcJXYxU6E-l38B99EQlsWSKxsyedeP70DwD5GfYwIPhEy9KfSVH0qESYxWQPbOB6kUcrQy_rqHqdsC-yEMEWI0pSRTbBFE84pHvBt8DF0VW6sqI2z0BXw_vH0Ad44pUtjX6GwCo7muTcqOhNBKzh0NmgbmgAfpfMdUjs4VtrWppjD80aU0ZPwr7runsb2zeSmdj50zXeTa_xTOKP863MXbBSiDHpvefbA8-XF03AUTW6vxsPTSSQoTuqIYcoUloprEieEDTRONBFFmstcFAorRQeMMqYIxzKVNNZUkDxXEsdKC4kV7YGjRe_Mu_dGhzqrTJC6LIXVrgkZ4ZzQdnMpadHDP-jUNd6207VUilBCebvAHkALSnoXgtdFNvOmEn6eYZR1UrJWStZJyZZS2sjBsrjJK61-AysLLXC8AH6iq0__7fsGavOYzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890073803</pqid></control><display><type>article</type><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</creator><creatorcontrib>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</creatorcontrib><description>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01252</identifier><identifier>PMID: 37883148</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell cycle ; Cell Cycle Proteins - metabolism ; Consensus ; Humans ; Kinases ; Liver cancer ; Modelling ; Pathogenesis ; Pharmaceutical Modeling ; Polo-Like Kinase 1 ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Quantitative Structure-Activity Relationship ; Strategy</subject><ispartof>Journal of chemical information and modeling, 2023-11, Vol.63 (21), p.6912-6924</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 13, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</cites><orcidid>0000-0001-8497-5953 ; 0000-0003-3830-5160 ; 0000-0003-0910-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01252$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c01252$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37883148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Zixuan</creatorcontrib><creatorcontrib>Hwang, Siaw San</creatorcontrib><creatorcontrib>Bhave, Mrinal</creatorcontrib><creatorcontrib>Rahman, Taufiq</creatorcontrib><creatorcontrib>Chee Wezen, Xavier</creatorcontrib><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</description><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Consensus</subject><subject>Humans</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Modelling</subject><subject>Pathogenesis</subject><subject>Pharmaceutical Modeling</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Strategy</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kclOwzAURS0EYijsWSFLbFiQ4qFxnCWUoRVFzBK7yLEdcJXYxU6E-l38B99EQlsWSKxsyedeP70DwD5GfYwIPhEy9KfSVH0qESYxWQPbOB6kUcrQy_rqHqdsC-yEMEWI0pSRTbBFE84pHvBt8DF0VW6sqI2z0BXw_vH0Ad44pUtjX6GwCo7muTcqOhNBKzh0NmgbmgAfpfMdUjs4VtrWppjD80aU0ZPwr7runsb2zeSmdj50zXeTa_xTOKP863MXbBSiDHpvefbA8-XF03AUTW6vxsPTSSQoTuqIYcoUloprEieEDTRONBFFmstcFAorRQeMMqYIxzKVNNZUkDxXEsdKC4kV7YGjRe_Mu_dGhzqrTJC6LIXVrgkZ4ZzQdnMpadHDP-jUNd6207VUilBCebvAHkALSnoXgtdFNvOmEn6eYZR1UrJWStZJyZZS2sjBsrjJK61-AysLLXC8AH6iq0__7fsGavOYzA</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Cheng, Zixuan</creator><creator>Hwang, Siaw San</creator><creator>Bhave, Mrinal</creator><creator>Rahman, Taufiq</creator><creator>Chee Wezen, Xavier</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8497-5953</orcidid><orcidid>https://orcid.org/0000-0003-3830-5160</orcidid><orcidid>https://orcid.org/0000-0003-0910-3519</orcidid></search><sort><creationdate>20231113</creationdate><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><author>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Consensus</topic><topic>Humans</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Modelling</topic><topic>Pathogenesis</topic><topic>Pharmaceutical Modeling</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zixuan</creatorcontrib><creatorcontrib>Hwang, Siaw San</creatorcontrib><creatorcontrib>Bhave, Mrinal</creatorcontrib><creatorcontrib>Rahman, Taufiq</creatorcontrib><creatorcontrib>Chee Wezen, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zixuan</au><au>Hwang, Siaw San</au><au>Bhave, Mrinal</au><au>Rahman, Taufiq</au><au>Chee Wezen, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-11-13</date><risdate>2023</risdate><volume>63</volume><issue>21</issue><spage>6912</spage><epage>6924</epage><pages>6912-6924</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37883148</pmid><doi>10.1021/acs.jcim.3c01252</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8497-5953</orcidid><orcidid>https://orcid.org/0000-0003-3830-5160</orcidid><orcidid>https://orcid.org/0000-0003-0910-3519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-11, Vol.63 (21), p.6912-6924
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2882325292
source MEDLINE; ACS Publications
subjects Cell cycle
Cell Cycle Proteins - metabolism
Consensus
Humans
Kinases
Liver cancer
Modelling
Pathogenesis
Pharmaceutical Modeling
Polo-Like Kinase 1
Protein Kinase Inhibitors - pharmacology
Protein Serine-Threonine Kinases - metabolism
Proteins
Quantitative Structure-Activity Relationship
Strategy
title Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20QSAR%20Modeling%20and%20Hybrid-Based%20Consensus%20Scoring%20to%20Identify%20Dual-Targeting%20Inhibitors%20of%20PLK1%20and%20p38%CE%B3&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Cheng,%20Zixuan&rft.date=2023-11-13&rft.volume=63&rft.issue=21&rft.spage=6912&rft.epage=6924&rft.pages=6912-6924&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01252&rft_dat=%3Cproquest_cross%3E2882325292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890073803&rft_id=info:pmid/37883148&rfr_iscdi=true