Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ
Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and redu...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-11, Vol.63 (21), p.6912-6924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6924 |
---|---|
container_issue | 21 |
container_start_page | 6912 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Cheng, Zixuan Hwang, Siaw San Bhave, Mrinal Rahman, Taufiq Chee Wezen, Xavier |
description | Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets. |
doi_str_mv | 10.1021/acs.jcim.3c01252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882325292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882325292</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</originalsourceid><addsrcrecordid>eNp1kclOwzAURS0EYijsWSFLbFiQ4qFxnCWUoRVFzBK7yLEdcJXYxU6E-l38B99EQlsWSKxsyedeP70DwD5GfYwIPhEy9KfSVH0qESYxWQPbOB6kUcrQy_rqHqdsC-yEMEWI0pSRTbBFE84pHvBt8DF0VW6sqI2z0BXw_vH0Ad44pUtjX6GwCo7muTcqOhNBKzh0NmgbmgAfpfMdUjs4VtrWppjD80aU0ZPwr7runsb2zeSmdj50zXeTa_xTOKP863MXbBSiDHpvefbA8-XF03AUTW6vxsPTSSQoTuqIYcoUloprEieEDTRONBFFmstcFAorRQeMMqYIxzKVNNZUkDxXEsdKC4kV7YGjRe_Mu_dGhzqrTJC6LIXVrgkZ4ZzQdnMpadHDP-jUNd6207VUilBCebvAHkALSnoXgtdFNvOmEn6eYZR1UrJWStZJyZZS2sjBsrjJK61-AysLLXC8AH6iq0__7fsGavOYzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890073803</pqid></control><display><type>article</type><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</creator><creatorcontrib>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</creatorcontrib><description>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01252</identifier><identifier>PMID: 37883148</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell cycle ; Cell Cycle Proteins - metabolism ; Consensus ; Humans ; Kinases ; Liver cancer ; Modelling ; Pathogenesis ; Pharmaceutical Modeling ; Polo-Like Kinase 1 ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Quantitative Structure-Activity Relationship ; Strategy</subject><ispartof>Journal of chemical information and modeling, 2023-11, Vol.63 (21), p.6912-6924</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 13, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</cites><orcidid>0000-0001-8497-5953 ; 0000-0003-3830-5160 ; 0000-0003-0910-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01252$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c01252$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37883148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Zixuan</creatorcontrib><creatorcontrib>Hwang, Siaw San</creatorcontrib><creatorcontrib>Bhave, Mrinal</creatorcontrib><creatorcontrib>Rahman, Taufiq</creatorcontrib><creatorcontrib>Chee Wezen, Xavier</creatorcontrib><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</description><subject>Cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Consensus</subject><subject>Humans</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Modelling</subject><subject>Pathogenesis</subject><subject>Pharmaceutical Modeling</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Strategy</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kclOwzAURS0EYijsWSFLbFiQ4qFxnCWUoRVFzBK7yLEdcJXYxU6E-l38B99EQlsWSKxsyedeP70DwD5GfYwIPhEy9KfSVH0qESYxWQPbOB6kUcrQy_rqHqdsC-yEMEWI0pSRTbBFE84pHvBt8DF0VW6sqI2z0BXw_vH0Ad44pUtjX6GwCo7muTcqOhNBKzh0NmgbmgAfpfMdUjs4VtrWppjD80aU0ZPwr7runsb2zeSmdj50zXeTa_xTOKP863MXbBSiDHpvefbA8-XF03AUTW6vxsPTSSQoTuqIYcoUloprEieEDTRONBFFmstcFAorRQeMMqYIxzKVNNZUkDxXEsdKC4kV7YGjRe_Mu_dGhzqrTJC6LIXVrgkZ4ZzQdnMpadHDP-jUNd6207VUilBCebvAHkALSnoXgtdFNvOmEn6eYZR1UrJWStZJyZZS2sjBsrjJK61-AysLLXC8AH6iq0__7fsGavOYzA</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Cheng, Zixuan</creator><creator>Hwang, Siaw San</creator><creator>Bhave, Mrinal</creator><creator>Rahman, Taufiq</creator><creator>Chee Wezen, Xavier</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8497-5953</orcidid><orcidid>https://orcid.org/0000-0003-3830-5160</orcidid><orcidid>https://orcid.org/0000-0003-0910-3519</orcidid></search><sort><creationdate>20231113</creationdate><title>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</title><author>Cheng, Zixuan ; Hwang, Siaw San ; Bhave, Mrinal ; Rahman, Taufiq ; Chee Wezen, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-6136d1cd8e257264e17e2af9bcbafd1dd346366d281c9c35e3a2bbdc15deac1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Consensus</topic><topic>Humans</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Modelling</topic><topic>Pathogenesis</topic><topic>Pharmaceutical Modeling</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zixuan</creatorcontrib><creatorcontrib>Hwang, Siaw San</creatorcontrib><creatorcontrib>Bhave, Mrinal</creatorcontrib><creatorcontrib>Rahman, Taufiq</creatorcontrib><creatorcontrib>Chee Wezen, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zixuan</au><au>Hwang, Siaw San</au><au>Bhave, Mrinal</au><au>Rahman, Taufiq</au><au>Chee Wezen, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-11-13</date><risdate>2023</risdate><volume>63</volume><issue>21</issue><spage>6912</spage><epage>6924</epage><pages>6912-6924</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug–drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure–activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37883148</pmid><doi>10.1021/acs.jcim.3c01252</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8497-5953</orcidid><orcidid>https://orcid.org/0000-0003-3830-5160</orcidid><orcidid>https://orcid.org/0000-0003-0910-3519</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-11, Vol.63 (21), p.6912-6924 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2882325292 |
source | MEDLINE; ACS Publications |
subjects | Cell cycle Cell Cycle Proteins - metabolism Consensus Humans Kinases Liver cancer Modelling Pathogenesis Pharmaceutical Modeling Polo-Like Kinase 1 Protein Kinase Inhibitors - pharmacology Protein Serine-Threonine Kinases - metabolism Proteins Quantitative Structure-Activity Relationship Strategy |
title | Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20QSAR%20Modeling%20and%20Hybrid-Based%20Consensus%20Scoring%20to%20Identify%20Dual-Targeting%20Inhibitors%20of%20PLK1%20and%20p38%CE%B3&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Cheng,%20Zixuan&rft.date=2023-11-13&rft.volume=63&rft.issue=21&rft.spage=6912&rft.epage=6924&rft.pages=6912-6924&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01252&rft_dat=%3Cproquest_cross%3E2882325292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890073803&rft_id=info:pmid/37883148&rfr_iscdi=true |