Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis
Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been ex...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-11, Vol.95 (44), p.16201-16209 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16209 |
---|---|
container_issue | 44 |
container_start_page | 16201 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Han, Xiang-Bin Wang, Wei Jin, Ming-Liang Jing, Chang-Qing Liang, Bei-Dou Chai, Chao-Yang Xiong, Ren-Gen Zhang, Wen |
description | Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals. |
doi_str_mv | 10.1021/acs.analchem.3c02933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882323878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888643425</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</originalsourceid><addsrcrecordid>eNp9kT9PwzAUxC0EEqXwDRgssbCkPNuJ7bBV4a9UCaSWOXISt3FJk2I7lfrtcdTCwMD0hvvdSfcOoWsCEwKU3KnSTVSrmrLWmwkrgaaMnaARSShEXEp6ikYAwCIqAM7RhXNrAEKA8BHaf7Q7bRrTrnBWG6sa_K5tt3OfxmucPeC5WYVgPC_VwNzjB-NKbduBn_a-1q03JVZthbOub722S2380eSwr23Xr2o8V5tto6O5VyF0GqS9M-4SnS0DpK-Od4wWT4-L7CWavT2_ZtNZpFjCfMSrilLgklUaBOEK0qIgiVCiKES1BCpiLkDqVAatKFJRxmmViJhSxmVBOBuj20Ps1nZfvXY-3wwVmka1uutdTsN_GGVSyIDe_EHXXW-HJgMlecximgQqPlCl7Zyzeplvrdkou88J5MMceZgj_5kjP84RbHCwDepv7r-Wb-0tkZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888643425</pqid></control><display><type>article</type><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><source>ACS Publications</source><creator>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</creator><creatorcontrib>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</creatorcontrib><description>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02933</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Absorption ; Anisotropy ; Birefringence ; Chirality ; Circular dichroism ; Circular polarization ; Counterfeit ; Dichroism ; Enantiomers ; Fabrication ; Linear dichroism ; Optics ; Overloading ; Perovskites ; Polarized light ; Refractivity ; Sample preparation ; Single crystals ; Solid state ; Spectroscopy ; Spectrum analysis ; Thickness ; Thin films</subject><ispartof>Analytical chemistry (Washington), 2023-11, Vol.95 (44), p.16201-16209</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 7, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</citedby><cites>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</cites><orcidid>0000-0001-9400-9740 ; 0000-0003-2364-0193 ; 0000-0002-1997-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c02933$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c02933$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Han, Xiang-Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jin, Ming-Liang</creatorcontrib><creatorcontrib>Jing, Chang-Qing</creatorcontrib><creatorcontrib>Liang, Bei-Dou</creatorcontrib><creatorcontrib>Chai, Chao-Yang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</description><subject>Absorption</subject><subject>Anisotropy</subject><subject>Birefringence</subject><subject>Chirality</subject><subject>Circular dichroism</subject><subject>Circular polarization</subject><subject>Counterfeit</subject><subject>Dichroism</subject><subject>Enantiomers</subject><subject>Fabrication</subject><subject>Linear dichroism</subject><subject>Optics</subject><subject>Overloading</subject><subject>Perovskites</subject><subject>Polarized light</subject><subject>Refractivity</subject><subject>Sample preparation</subject><subject>Single crystals</subject><subject>Solid state</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kT9PwzAUxC0EEqXwDRgssbCkPNuJ7bBV4a9UCaSWOXISt3FJk2I7lfrtcdTCwMD0hvvdSfcOoWsCEwKU3KnSTVSrmrLWmwkrgaaMnaARSShEXEp6ikYAwCIqAM7RhXNrAEKA8BHaf7Q7bRrTrnBWG6sa_K5tt3OfxmucPeC5WYVgPC_VwNzjB-NKbduBn_a-1q03JVZthbOub722S2380eSwr23Xr2o8V5tto6O5VyF0GqS9M-4SnS0DpK-Od4wWT4-L7CWavT2_ZtNZpFjCfMSrilLgklUaBOEK0qIgiVCiKES1BCpiLkDqVAatKFJRxmmViJhSxmVBOBuj20Ps1nZfvXY-3wwVmka1uutdTsN_GGVSyIDe_EHXXW-HJgMlecximgQqPlCl7Zyzeplvrdkou88J5MMceZgj_5kjP84RbHCwDepv7r-Wb-0tkZA</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>Han, Xiang-Bin</creator><creator>Wang, Wei</creator><creator>Jin, Ming-Liang</creator><creator>Jing, Chang-Qing</creator><creator>Liang, Bei-Dou</creator><creator>Chai, Chao-Yang</creator><creator>Xiong, Ren-Gen</creator><creator>Zhang, Wen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9400-9740</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid><orcidid>https://orcid.org/0000-0002-1997-3051</orcidid></search><sort><creationdate>20231107</creationdate><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><author>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Anisotropy</topic><topic>Birefringence</topic><topic>Chirality</topic><topic>Circular dichroism</topic><topic>Circular polarization</topic><topic>Counterfeit</topic><topic>Dichroism</topic><topic>Enantiomers</topic><topic>Fabrication</topic><topic>Linear dichroism</topic><topic>Optics</topic><topic>Overloading</topic><topic>Perovskites</topic><topic>Polarized light</topic><topic>Refractivity</topic><topic>Sample preparation</topic><topic>Single crystals</topic><topic>Solid state</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xiang-Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jin, Ming-Liang</creatorcontrib><creatorcontrib>Jing, Chang-Qing</creatorcontrib><creatorcontrib>Liang, Bei-Dou</creatorcontrib><creatorcontrib>Chai, Chao-Yang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xiang-Bin</au><au>Wang, Wei</au><au>Jin, Ming-Liang</au><au>Jing, Chang-Qing</au><au>Liang, Bei-Dou</au><au>Chai, Chao-Yang</au><au>Xiong, Ren-Gen</au><au>Zhang, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-11-07</date><risdate>2023</risdate><volume>95</volume><issue>44</issue><spage>16201</spage><epage>16209</epage><pages>16201-16209</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c02933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9400-9740</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid><orcidid>https://orcid.org/0000-0002-1997-3051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-11, Vol.95 (44), p.16201-16209 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2882323878 |
source | ACS Publications |
subjects | Absorption Anisotropy Birefringence Chirality Circular dichroism Circular polarization Counterfeit Dichroism Enantiomers Fabrication Linear dichroism Optics Overloading Perovskites Polarized light Refractivity Sample preparation Single crystals Solid state Spectroscopy Spectrum analysis Thickness Thin films |
title | Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Chiral%20Perovskite%20CD%20Signal%20Scaling:%20Discerning%20Authentic%20and%20Counterfeit%20Signals%20through%20Sample-State%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Han,%20Xiang-Bin&rft.date=2023-11-07&rft.volume=95&rft.issue=44&rft.spage=16201&rft.epage=16209&rft.pages=16201-16209&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02933&rft_dat=%3Cproquest_cross%3E2888643425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888643425&rft_id=info:pmid/&rfr_iscdi=true |