Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis

Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-11, Vol.95 (44), p.16201-16209
Hauptverfasser: Han, Xiang-Bin, Wang, Wei, Jin, Ming-Liang, Jing, Chang-Qing, Liang, Bei-Dou, Chai, Chao-Yang, Xiong, Ren-Gen, Zhang, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16209
container_issue 44
container_start_page 16201
container_title Analytical chemistry (Washington)
container_volume 95
creator Han, Xiang-Bin
Wang, Wei
Jin, Ming-Liang
Jing, Chang-Qing
Liang, Bei-Dou
Chai, Chao-Yang
Xiong, Ren-Gen
Zhang, Wen
description Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.
doi_str_mv 10.1021/acs.analchem.3c02933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882323878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888643425</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</originalsourceid><addsrcrecordid>eNp9kT9PwzAUxC0EEqXwDRgssbCkPNuJ7bBV4a9UCaSWOXISt3FJk2I7lfrtcdTCwMD0hvvdSfcOoWsCEwKU3KnSTVSrmrLWmwkrgaaMnaARSShEXEp6ikYAwCIqAM7RhXNrAEKA8BHaf7Q7bRrTrnBWG6sa_K5tt3OfxmucPeC5WYVgPC_VwNzjB-NKbduBn_a-1q03JVZthbOub722S2380eSwr23Xr2o8V5tto6O5VyF0GqS9M-4SnS0DpK-Od4wWT4-L7CWavT2_ZtNZpFjCfMSrilLgklUaBOEK0qIgiVCiKES1BCpiLkDqVAatKFJRxmmViJhSxmVBOBuj20Ps1nZfvXY-3wwVmka1uutdTsN_GGVSyIDe_EHXXW-HJgMlecximgQqPlCl7Zyzeplvrdkou88J5MMceZgj_5kjP84RbHCwDepv7r-Wb-0tkZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888643425</pqid></control><display><type>article</type><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><source>ACS Publications</source><creator>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</creator><creatorcontrib>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</creatorcontrib><description>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02933</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Absorption ; Anisotropy ; Birefringence ; Chirality ; Circular dichroism ; Circular polarization ; Counterfeit ; Dichroism ; Enantiomers ; Fabrication ; Linear dichroism ; Optics ; Overloading ; Perovskites ; Polarized light ; Refractivity ; Sample preparation ; Single crystals ; Solid state ; Spectroscopy ; Spectrum analysis ; Thickness ; Thin films</subject><ispartof>Analytical chemistry (Washington), 2023-11, Vol.95 (44), p.16201-16209</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 7, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</citedby><cites>FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</cites><orcidid>0000-0001-9400-9740 ; 0000-0003-2364-0193 ; 0000-0002-1997-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c02933$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c02933$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Han, Xiang-Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jin, Ming-Liang</creatorcontrib><creatorcontrib>Jing, Chang-Qing</creatorcontrib><creatorcontrib>Liang, Bei-Dou</creatorcontrib><creatorcontrib>Chai, Chao-Yang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</description><subject>Absorption</subject><subject>Anisotropy</subject><subject>Birefringence</subject><subject>Chirality</subject><subject>Circular dichroism</subject><subject>Circular polarization</subject><subject>Counterfeit</subject><subject>Dichroism</subject><subject>Enantiomers</subject><subject>Fabrication</subject><subject>Linear dichroism</subject><subject>Optics</subject><subject>Overloading</subject><subject>Perovskites</subject><subject>Polarized light</subject><subject>Refractivity</subject><subject>Sample preparation</subject><subject>Single crystals</subject><subject>Solid state</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kT9PwzAUxC0EEqXwDRgssbCkPNuJ7bBV4a9UCaSWOXISt3FJk2I7lfrtcdTCwMD0hvvdSfcOoWsCEwKU3KnSTVSrmrLWmwkrgaaMnaARSShEXEp6ikYAwCIqAM7RhXNrAEKA8BHaf7Q7bRrTrnBWG6sa_K5tt3OfxmucPeC5WYVgPC_VwNzjB-NKbduBn_a-1q03JVZthbOub722S2380eSwr23Xr2o8V5tto6O5VyF0GqS9M-4SnS0DpK-Od4wWT4-L7CWavT2_ZtNZpFjCfMSrilLgklUaBOEK0qIgiVCiKES1BCpiLkDqVAatKFJRxmmViJhSxmVBOBuj20Ps1nZfvXY-3wwVmka1uutdTsN_GGVSyIDe_EHXXW-HJgMlecximgQqPlCl7Zyzeplvrdkou88J5MMceZgj_5kjP84RbHCwDepv7r-Wb-0tkZA</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>Han, Xiang-Bin</creator><creator>Wang, Wei</creator><creator>Jin, Ming-Liang</creator><creator>Jing, Chang-Qing</creator><creator>Liang, Bei-Dou</creator><creator>Chai, Chao-Yang</creator><creator>Xiong, Ren-Gen</creator><creator>Zhang, Wen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9400-9740</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid><orcidid>https://orcid.org/0000-0002-1997-3051</orcidid></search><sort><creationdate>20231107</creationdate><title>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</title><author>Han, Xiang-Bin ; Wang, Wei ; Jin, Ming-Liang ; Jing, Chang-Qing ; Liang, Bei-Dou ; Chai, Chao-Yang ; Xiong, Ren-Gen ; Zhang, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-6dd220683de0716a09bb157a7bb7df02746708e9816abb97c49d57422368b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Anisotropy</topic><topic>Birefringence</topic><topic>Chirality</topic><topic>Circular dichroism</topic><topic>Circular polarization</topic><topic>Counterfeit</topic><topic>Dichroism</topic><topic>Enantiomers</topic><topic>Fabrication</topic><topic>Linear dichroism</topic><topic>Optics</topic><topic>Overloading</topic><topic>Perovskites</topic><topic>Polarized light</topic><topic>Refractivity</topic><topic>Sample preparation</topic><topic>Single crystals</topic><topic>Solid state</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xiang-Bin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jin, Ming-Liang</creatorcontrib><creatorcontrib>Jing, Chang-Qing</creatorcontrib><creatorcontrib>Liang, Bei-Dou</creatorcontrib><creatorcontrib>Chai, Chao-Yang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xiang-Bin</au><au>Wang, Wei</au><au>Jin, Ming-Liang</au><au>Jing, Chang-Qing</au><au>Liang, Bei-Dou</au><au>Chai, Chao-Yang</au><au>Xiong, Ren-Gen</au><au>Zhang, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-11-07</date><risdate>2023</risdate><volume>95</volume><issue>44</issue><spage>16201</spage><epage>16209</epage><pages>16201-16209</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c02933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9400-9740</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid><orcidid>https://orcid.org/0000-0002-1997-3051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-11, Vol.95 (44), p.16201-16209
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2882323878
source ACS Publications
subjects Absorption
Anisotropy
Birefringence
Chirality
Circular dichroism
Circular polarization
Counterfeit
Dichroism
Enantiomers
Fabrication
Linear dichroism
Optics
Overloading
Perovskites
Polarized light
Refractivity
Sample preparation
Single crystals
Solid state
Spectroscopy
Spectrum analysis
Thickness
Thin films
title Unveiling Chiral Perovskite CD Signal Scaling: Discerning Authentic and Counterfeit Signals through Sample-State Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Chiral%20Perovskite%20CD%20Signal%20Scaling:%20Discerning%20Authentic%20and%20Counterfeit%20Signals%20through%20Sample-State%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Han,%20Xiang-Bin&rft.date=2023-11-07&rft.volume=95&rft.issue=44&rft.spage=16201&rft.epage=16209&rft.pages=16201-16209&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02933&rft_dat=%3Cproquest_cross%3E2888643425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888643425&rft_id=info:pmid/&rfr_iscdi=true