Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study
Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2024-01, Vol.35 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Nanotechnology |
container_volume | 35 |
creator | Zhang, Guangzheng Dong, Shilin Wang, Xinyu Xin, Gongming |
description | Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B. |
doi_str_mv | 10.1088/1361-6528/ad06d0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882322017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882322017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i258t-2bfc59df1ca532c2a6d630d3427685b2ee39733631ad8ac774739edc746eec6c3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWB97l1m6cDSPSSZ1p8UXFNwoLsNtcsdOmSZjkhH897ZUFFcHLt89HD5Czji75MyYKy41r7QS5go8057tkcnvaZ9M2FQ1VV2b-pAc5bxijHMj-ISElyWmNfS0JAh5iKnQ2NL3BMMSA1YzeUvzOGDqoZTOYaYQPP2EQD0m-gbQZ7rEginmkkZXxoT5mgJdxx7d2EOi_ivAunOZ5jL6rxNy0G5-8PQnj8nr_d3L7LGaPz88zW7mVSeUKZVYtE5NfcsdKCmcAO21ZF7WotFGLQSinDZSasnBG3BNUzdyit41tUZ02sljcr7rHVL8GDEXu-6yw76HgHHMVhgjpBCMNxv0Yod2cbCrOKawGWY5s1utduvQbh3anda_5n94gBCtVFZZplTNuB18K78Baqh6iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882322017</pqid></control><display><type>article</type><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</creator><creatorcontrib>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</creatorcontrib><description>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad06d0</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>interfacial thermal resistance ; molecular dynamics ; superlattice ; thermal conductivity ; vdW heterostructure</subject><ispartof>Nanotechnology, 2024-01, Vol.35 (5)</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4143-334X ; 0000-0003-3974-0391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ad06d0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</description><subject>interfacial thermal resistance</subject><subject>molecular dynamics</subject><subject>superlattice</subject><subject>thermal conductivity</subject><subject>vdW heterostructure</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMoWB97l1m6cDSPSSZ1p8UXFNwoLsNtcsdOmSZjkhH897ZUFFcHLt89HD5Czji75MyYKy41r7QS5go8057tkcnvaZ9M2FQ1VV2b-pAc5bxijHMj-ISElyWmNfS0JAh5iKnQ2NL3BMMSA1YzeUvzOGDqoZTOYaYQPP2EQD0m-gbQZ7rEginmkkZXxoT5mgJdxx7d2EOi_ivAunOZ5jL6rxNy0G5-8PQnj8nr_d3L7LGaPz88zW7mVSeUKZVYtE5NfcsdKCmcAO21ZF7WotFGLQSinDZSasnBG3BNUzdyit41tUZ02sljcr7rHVL8GDEXu-6yw76HgHHMVhgjpBCMNxv0Yod2cbCrOKawGWY5s1utduvQbh3anda_5n94gBCtVFZZplTNuB18K78Baqh6iA</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Zhang, Guangzheng</creator><creator>Dong, Shilin</creator><creator>Wang, Xinyu</creator><creator>Xin, Gongming</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid></search><sort><creationdate>20240129</creationdate><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><author>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i258t-2bfc59df1ca532c2a6d630d3427685b2ee39733631ad8ac774739edc746eec6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>interfacial thermal resistance</topic><topic>molecular dynamics</topic><topic>superlattice</topic><topic>thermal conductivity</topic><topic>vdW heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangzheng</au><au>Dong, Shilin</au><au>Wang, Xinyu</au><au>Xin, Gongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>35</volume><issue>5</issue><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ad06d0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2024-01, Vol.35 (5) |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2882322017 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals |
subjects | interfacial thermal resistance molecular dynamics superlattice thermal conductivity vdW heterostructure |
title | Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20of%20graphene-C3B%20superlattices%20and%20van%20der%20Waals%20heterostructures:%20a%20molecular%20dynamics%20study&rft.jtitle=Nanotechnology&rft.au=Zhang,%20Guangzheng&rft.date=2024-01-29&rft.volume=35&rft.issue=5&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad06d0&rft_dat=%3Cproquest_iop_j%3E2882322017%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882322017&rft_id=info:pmid/&rfr_iscdi=true |