Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study

Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2024-01, Vol.35 (5)
Hauptverfasser: Zhang, Guangzheng, Dong, Shilin, Wang, Xinyu, Xin, Gongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Nanotechnology
container_volume 35
creator Zhang, Guangzheng
Dong, Shilin
Wang, Xinyu
Xin, Gongming
description Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.
doi_str_mv 10.1088/1361-6528/ad06d0
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2882322017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882322017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i258t-2bfc59df1ca532c2a6d630d3427685b2ee39733631ad8ac774739edc746eec6c3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMoWB97l1m6cDSPSSZ1p8UXFNwoLsNtcsdOmSZjkhH897ZUFFcHLt89HD5Czji75MyYKy41r7QS5go8057tkcnvaZ9M2FQ1VV2b-pAc5bxijHMj-ISElyWmNfS0JAh5iKnQ2NL3BMMSA1YzeUvzOGDqoZTOYaYQPP2EQD0m-gbQZ7rEginmkkZXxoT5mgJdxx7d2EOi_ivAunOZ5jL6rxNy0G5-8PQnj8nr_d3L7LGaPz88zW7mVSeUKZVYtE5NfcsdKCmcAO21ZF7WotFGLQSinDZSasnBG3BNUzdyit41tUZ02sljcr7rHVL8GDEXu-6yw76HgHHMVhgjpBCMNxv0Yod2cbCrOKawGWY5s1utduvQbh3anda_5n94gBCtVFZZplTNuB18K78Baqh6iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882322017</pqid></control><display><type>article</type><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</creator><creatorcontrib>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</creatorcontrib><description>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad06d0</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>interfacial thermal resistance ; molecular dynamics ; superlattice ; thermal conductivity ; vdW heterostructure</subject><ispartof>Nanotechnology, 2024-01, Vol.35 (5)</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4143-334X ; 0000-0003-3974-0391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ad06d0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</description><subject>interfacial thermal resistance</subject><subject>molecular dynamics</subject><subject>superlattice</subject><subject>thermal conductivity</subject><subject>vdW heterostructure</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMoWB97l1m6cDSPSSZ1p8UXFNwoLsNtcsdOmSZjkhH897ZUFFcHLt89HD5Czji75MyYKy41r7QS5go8057tkcnvaZ9M2FQ1VV2b-pAc5bxijHMj-ISElyWmNfS0JAh5iKnQ2NL3BMMSA1YzeUvzOGDqoZTOYaYQPP2EQD0m-gbQZ7rEginmkkZXxoT5mgJdxx7d2EOi_ivAunOZ5jL6rxNy0G5-8PQnj8nr_d3L7LGaPz88zW7mVSeUKZVYtE5NfcsdKCmcAO21ZF7WotFGLQSinDZSasnBG3BNUzdyit41tUZ02sljcr7rHVL8GDEXu-6yw76HgHHMVhgjpBCMNxv0Yod2cbCrOKawGWY5s1utduvQbh3anda_5n94gBCtVFZZplTNuB18K78Baqh6iA</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Zhang, Guangzheng</creator><creator>Dong, Shilin</creator><creator>Wang, Xinyu</creator><creator>Xin, Gongming</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid></search><sort><creationdate>20240129</creationdate><title>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</title><author>Zhang, Guangzheng ; Dong, Shilin ; Wang, Xinyu ; Xin, Gongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i258t-2bfc59df1ca532c2a6d630d3427685b2ee39733631ad8ac774739edc746eec6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>interfacial thermal resistance</topic><topic>molecular dynamics</topic><topic>superlattice</topic><topic>thermal conductivity</topic><topic>vdW heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guangzheng</au><au>Dong, Shilin</au><au>Wang, Xinyu</au><au>Xin, Gongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2024-01-29</date><risdate>2024</risdate><volume>35</volume><issue>5</issue><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ad06d0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2024-01, Vol.35 (5)
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_2882322017
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects interfacial thermal resistance
molecular dynamics
superlattice
thermal conductivity
vdW heterostructure
title Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20of%20graphene-C3B%20superlattices%20and%20van%20der%20Waals%20heterostructures:%20a%20molecular%20dynamics%20study&rft.jtitle=Nanotechnology&rft.au=Zhang,%20Guangzheng&rft.date=2024-01-29&rft.volume=35&rft.issue=5&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad06d0&rft_dat=%3Cproquest_iop_j%3E2882322017%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882322017&rft_id=info:pmid/&rfr_iscdi=true