Deep Learning‐Driven Transformation: A Novel Approach for Mitigating Batch Effects in Diffusion MRI Beyond Traditional Harmonization

Background “Batch effect” in MR images, due to vendor‐specific features, MR machine generations, and imaging parameters, challenges image quality and hinders deep learning (DL) model generalizability. Purpose We aim to develop a DL model using contrast adjustment and super‐resolution to reduce diffu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2024-08, Vol.60 (2), p.510-522
Hauptverfasser: Wada, Akihiko, Akashi, Toshiaki, Hagiwara, Akifumi, Nishizawa, Mitsuo, Shimoji, Keigo, Kikuta, Junko, Maekawa, Tomoko, Sano, Katsuhiro, Kamagata, Koji, Nakanishi, Atsushi, Aoki, Shigeki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!