Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties

We present the physico‐chemical and optical study of Mo/Si multilayer interferential mirrors (MIM) with a Si thickness of 2 nm and a Mo thickness varying from 1 to 4 nm. In two other samples, barrier layers of B4C have been added either at the Mo/Si interface or at the Si/Mo interface to enhance the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2006-04, Vol.38 (4), p.744-747
Hauptverfasser: Maury, H., André, J.-M., Gautier, J., Bridou, F., Delmotte, F., Ravet, M.-F., Holliger, P., Jonnard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 4
container_start_page 744
container_title Surface and interface analysis
container_volume 38
creator Maury, H.
André, J.-M.
Gautier, J.
Bridou, F.
Delmotte, F.
Ravet, M.-F.
Holliger, P.
Jonnard, P.
description We present the physico‐chemical and optical study of Mo/Si multilayer interferential mirrors (MIM) with a Si thickness of 2 nm and a Mo thickness varying from 1 to 4 nm. In two other samples, barrier layers of B4C have been added either at the Mo/Si interface or at the Si/Mo interface to enhance the optical index contrast in the soft X rays and to minimize the growth of molybdenum silicides. The physico‐chemical analysis is carried out by X‐ray emission spectroscopy (XES) induced by electrons. The Si 3p density of valence states of the silicon atoms that are present in the multilayers are obtained via the analysis of the band Si Kβ (3p→1s transition) emission band. The emission band of the multilayer is fitted by a weighted sum of the compounds likely to be present at the interfaces: amorphous silicon, MoSi2 and Mo5Si3. From the contribution of the silicides, the thickness of the transition layer is determined. The optical analysis is performed by X‐ray reflectivity (XR) at two wavelengths (0.154 and 0.712 nm). The simulation of the results reveals the importance of considering a four‐layer model to describe one period in the stack. Moreover, we evidence the good performance of the multilayer with a Mo thickness of 3 nm. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sia.2248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28816038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28816038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3648-7b75d628e2a8922c4ec5da97282aa44c7b438aa5cbacc74f3a4a80fca3c83fc03</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpodsk0J_gS0svTvRlS-4thDQJJGkgKYVcxOzsmFVrW1tJS2roj683a5pTTwMzzzzDvIy9F_xYcC5PkodjKbV9xRaCN3XZNMK-ZgsutCylluIte5fSD865VbZesD936zF5DCWuqfcIXZHydjUWoS3ymgo_ZIotIKVd5yac3Pui33bZdzBSnMcUach-Wu19jCGmzwWGGKmD7MNQPPm8fnaFTX4-sIlhQzF7SofsTQtdoqO5HrBvX84fzi7L668XV2en1yWqWtvSLE21qqUlCbaREjVhtYLGSCsBtEaz1MoCVLgERKNbBRosbxEUWtUiVwfs4947nf61pZRd7xNS18FAYZuctFbUXNkJ_LQHMYaUIrVuE30PcXSCu128borX7eKd0A-zE9L0VRthQJ9eeGNMVRkxceWee_Idjf_1ufur09k78z5l-v2Ph_jT1UaZyn2_vXDmUQpRPz64S_UXNVmbGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28816038</pqid></control><display><type>article</type><title>Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties</title><source>Access via Wiley Online Library</source><creator>Maury, H. ; André, J.-M. ; Gautier, J. ; Bridou, F. ; Delmotte, F. ; Ravet, M.-F. ; Holliger, P. ; Jonnard, P.</creator><creatorcontrib>Maury, H. ; André, J.-M. ; Gautier, J. ; Bridou, F. ; Delmotte, F. ; Ravet, M.-F. ; Holliger, P. ; Jonnard, P.</creatorcontrib><description>We present the physico‐chemical and optical study of Mo/Si multilayer interferential mirrors (MIM) with a Si thickness of 2 nm and a Mo thickness varying from 1 to 4 nm. In two other samples, barrier layers of B4C have been added either at the Mo/Si interface or at the Si/Mo interface to enhance the optical index contrast in the soft X rays and to minimize the growth of molybdenum silicides. The physico‐chemical analysis is carried out by X‐ray emission spectroscopy (XES) induced by electrons. The Si 3p density of valence states of the silicon atoms that are present in the multilayers are obtained via the analysis of the band Si Kβ (3p→1s transition) emission band. The emission band of the multilayer is fitted by a weighted sum of the compounds likely to be present at the interfaces: amorphous silicon, MoSi2 and Mo5Si3. From the contribution of the silicides, the thickness of the transition layer is determined. The optical analysis is performed by X‐ray reflectivity (XR) at two wavelengths (0.154 and 0.712 nm). The simulation of the results reveals the importance of considering a four‐layer model to describe one period in the stack. Moreover, we evidence the good performance of the multilayer with a Mo thickness of 3 nm. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.2248</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; molybdenum ; multilayer ; Physics ; silicide ; silicon ; X-ray emission ; X-ray reflectivity</subject><ispartof>Surface and interface analysis, 2006-04, Vol.38 (4), p.744-747</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3648-7b75d628e2a8922c4ec5da97282aa44c7b438aa5cbacc74f3a4a80fca3c83fc03</citedby><cites>FETCH-LOGICAL-c3648-7b75d628e2a8922c4ec5da97282aa44c7b438aa5cbacc74f3a4a80fca3c83fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.2248$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.2248$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,1418,23932,23933,25142,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17775571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maury, H.</creatorcontrib><creatorcontrib>André, J.-M.</creatorcontrib><creatorcontrib>Gautier, J.</creatorcontrib><creatorcontrib>Bridou, F.</creatorcontrib><creatorcontrib>Delmotte, F.</creatorcontrib><creatorcontrib>Ravet, M.-F.</creatorcontrib><creatorcontrib>Holliger, P.</creatorcontrib><creatorcontrib>Jonnard, P.</creatorcontrib><title>Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>We present the physico‐chemical and optical study of Mo/Si multilayer interferential mirrors (MIM) with a Si thickness of 2 nm and a Mo thickness varying from 1 to 4 nm. In two other samples, barrier layers of B4C have been added either at the Mo/Si interface or at the Si/Mo interface to enhance the optical index contrast in the soft X rays and to minimize the growth of molybdenum silicides. The physico‐chemical analysis is carried out by X‐ray emission spectroscopy (XES) induced by electrons. The Si 3p density of valence states of the silicon atoms that are present in the multilayers are obtained via the analysis of the band Si Kβ (3p→1s transition) emission band. The emission band of the multilayer is fitted by a weighted sum of the compounds likely to be present at the interfaces: amorphous silicon, MoSi2 and Mo5Si3. From the contribution of the silicides, the thickness of the transition layer is determined. The optical analysis is performed by X‐ray reflectivity (XR) at two wavelengths (0.154 and 0.712 nm). The simulation of the results reveals the importance of considering a four‐layer model to describe one period in the stack. Moreover, we evidence the good performance of the multilayer with a Mo thickness of 3 nm. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>molybdenum</subject><subject>multilayer</subject><subject>Physics</subject><subject>silicide</subject><subject>silicon</subject><subject>X-ray emission</subject><subject>X-ray reflectivity</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVpodsk0J_gS0svTvRlS-4thDQJJGkgKYVcxOzsmFVrW1tJS2roj683a5pTTwMzzzzDvIy9F_xYcC5PkodjKbV9xRaCN3XZNMK-ZgsutCylluIte5fSD865VbZesD936zF5DCWuqfcIXZHydjUWoS3ymgo_ZIotIKVd5yac3Pui33bZdzBSnMcUach-Wu19jCGmzwWGGKmD7MNQPPm8fnaFTX4-sIlhQzF7SofsTQtdoqO5HrBvX84fzi7L668XV2en1yWqWtvSLE21qqUlCbaREjVhtYLGSCsBtEaz1MoCVLgERKNbBRosbxEUWtUiVwfs4947nf61pZRd7xNS18FAYZuctFbUXNkJ_LQHMYaUIrVuE30PcXSCu128borX7eKd0A-zE9L0VRthQJ9eeGNMVRkxceWee_Idjf_1ufur09k78z5l-v2Ph_jT1UaZyn2_vXDmUQpRPz64S_UXNVmbGg</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Maury, H.</creator><creator>André, J.-M.</creator><creator>Gautier, J.</creator><creator>Bridou, F.</creator><creator>Delmotte, F.</creator><creator>Ravet, M.-F.</creator><creator>Holliger, P.</creator><creator>Jonnard, P.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200604</creationdate><title>Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties</title><author>Maury, H. ; André, J.-M. ; Gautier, J. ; Bridou, F. ; Delmotte, F. ; Ravet, M.-F. ; Holliger, P. ; Jonnard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3648-7b75d628e2a8922c4ec5da97282aa44c7b438aa5cbacc74f3a4a80fca3c83fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>molybdenum</topic><topic>multilayer</topic><topic>Physics</topic><topic>silicide</topic><topic>silicon</topic><topic>X-ray emission</topic><topic>X-ray reflectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maury, H.</creatorcontrib><creatorcontrib>André, J.-M.</creatorcontrib><creatorcontrib>Gautier, J.</creatorcontrib><creatorcontrib>Bridou, F.</creatorcontrib><creatorcontrib>Delmotte, F.</creatorcontrib><creatorcontrib>Ravet, M.-F.</creatorcontrib><creatorcontrib>Holliger, P.</creatorcontrib><creatorcontrib>Jonnard, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maury, H.</au><au>André, J.-M.</au><au>Gautier, J.</au><au>Bridou, F.</au><au>Delmotte, F.</au><au>Ravet, M.-F.</au><au>Holliger, P.</au><au>Jonnard, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2006-04</date><risdate>2006</risdate><volume>38</volume><issue>4</issue><spage>744</spage><epage>747</epage><pages>744-747</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>We present the physico‐chemical and optical study of Mo/Si multilayer interferential mirrors (MIM) with a Si thickness of 2 nm and a Mo thickness varying from 1 to 4 nm. In two other samples, barrier layers of B4C have been added either at the Mo/Si interface or at the Si/Mo interface to enhance the optical index contrast in the soft X rays and to minimize the growth of molybdenum silicides. The physico‐chemical analysis is carried out by X‐ray emission spectroscopy (XES) induced by electrons. The Si 3p density of valence states of the silicon atoms that are present in the multilayers are obtained via the analysis of the band Si Kβ (3p→1s transition) emission band. The emission band of the multilayer is fitted by a weighted sum of the compounds likely to be present at the interfaces: amorphous silicon, MoSi2 and Mo5Si3. From the contribution of the silicides, the thickness of the transition layer is determined. The optical analysis is performed by X‐ray reflectivity (XR) at two wavelengths (0.154 and 0.712 nm). The simulation of the results reveals the importance of considering a four‐layer model to describe one period in the stack. Moreover, we evidence the good performance of the multilayer with a Mo thickness of 3 nm. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/sia.2248</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2006-04, Vol.38 (4), p.744-747
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_miscellaneous_28816038
source Access via Wiley Online Library
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
molybdenum
multilayer
Physics
silicide
silicon
X-ray emission
X-ray reflectivity
title Physico-chemical study of the interfaces of Mo/Si multilayer interferential mirrors: correlation with the optical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physico-chemical%20study%20of%20the%20interfaces%20of%20Mo/Si%20multilayer%20interferential%20mirrors:%20correlation%20with%20the%20optical%20properties&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Maury,%20H.&rft.date=2006-04&rft.volume=38&rft.issue=4&rft.spage=744&rft.epage=747&rft.pages=744-747&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.2248&rft_dat=%3Cproquest_cross%3E28816038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28816038&rft_id=info:pmid/&rfr_iscdi=true