Interconnect scaling scenario using a chip level interconnect model
This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2000-01, Vol.47 (1), p.90-96 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | IEEE transactions on electron devices |
container_volume | 47 |
creator | Yamashita, K. Odanaka, S. |
description | This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics. |
doi_str_mv | 10.1109/16.817572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28814594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817572</ieee_id><sourcerecordid>28487272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOBFFKzVg1dPwYPiIXXfj6MEH4WCFz0v281EU9Kk7iaC_94tKSIe1NMwzLfDzA5CpwTPCMHmmsiZJkoouocmRAiVG8nlPppgTHRumGaH6CjGVUol53SCinnbQ_Bd24Lvs-hdU7cvKULrQt1lQ9ymLvOv9SZr4B2arP7-YN2V0Byjg8o1EU52cYqe726fiod88Xg_L24WuWdG97n3XGtcOeeFZIppLw0rKw2-BO6YA710xBtGGcauZEslJSyVI-AFdpRVjE3R5dh3E7q3AWJv13WatGlcC90QrSFcMmGYSPLiV0m1JlwY_g_ItaKK_g2VxGl2leD5D7jqhtCmf7Fai7QcJTihqxH50MUYoLKbUK9d-LAE2-0dLZF2vGOyZ6OtAeDL7YqfNJiW9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885230210</pqid></control><display><type>article</type><title>Interconnect scaling scenario using a chip level interconnect model</title><source>IEEE Electronic Library (IEL)</source><creator>Yamashita, K. ; Odanaka, S.</creator><creatorcontrib>Yamashita, K. ; Odanaka, S.</creatorcontrib><description>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.817572</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; CMOS ; CMOS integrated circuits ; Devices ; Insertion ; Materials selection ; Mathematical models ; Methodology ; Multilevel</subject><ispartof>IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.90-96</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</citedby><cites>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/817572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Odanaka, S.</creatorcontrib><title>Interconnect scaling scenario using a chip level interconnect model</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</description><subject>Circuit design</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Devices</subject><subject>Insertion</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Multilevel</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLw0AQAOBFFKzVg1dPwYPiIXXfj6MEH4WCFz0v281EU9Kk7iaC_94tKSIe1NMwzLfDzA5CpwTPCMHmmsiZJkoouocmRAiVG8nlPppgTHRumGaH6CjGVUol53SCinnbQ_Bd24Lvs-hdU7cvKULrQt1lQ9ymLvOv9SZr4B2arP7-YN2V0Byjg8o1EU52cYqe726fiod88Xg_L24WuWdG97n3XGtcOeeFZIppLw0rKw2-BO6YA710xBtGGcauZEslJSyVI-AFdpRVjE3R5dh3E7q3AWJv13WatGlcC90QrSFcMmGYSPLiV0m1JlwY_g_ItaKK_g2VxGl2leD5D7jqhtCmf7Fai7QcJTihqxH50MUYoLKbUK9d-LAE2-0dLZF2vGOyZ6OtAeDL7YqfNJiW9A</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Yamashita, K.</creator><creator>Odanaka, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200001</creationdate><title>Interconnect scaling scenario using a chip level interconnect model</title><author>Yamashita, K. ; Odanaka, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Circuit design</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Devices</topic><topic>Insertion</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Multilevel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Odanaka, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamashita, K.</au><au>Odanaka, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interconnect scaling scenario using a chip level interconnect model</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-01</date><risdate>2000</risdate><volume>47</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.817572</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.90-96 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_28814594 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit design CMOS CMOS integrated circuits Devices Insertion Materials selection Mathematical models Methodology Multilevel |
title | Interconnect scaling scenario using a chip level interconnect model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interconnect%20scaling%20scenario%20using%20a%20chip%20level%20interconnect%20model&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Yamashita,%20K.&rft.date=2000-01&rft.volume=47&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.817572&rft_dat=%3Cproquest_RIE%3E28487272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885230210&rft_id=info:pmid/&rft_ieee_id=817572&rfr_iscdi=true |