Interconnect scaling scenario using a chip level interconnect model

This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2000-01, Vol.47 (1), p.90-96
Hauptverfasser: Yamashita, K., Odanaka, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 90
container_title IEEE transactions on electron devices
container_volume 47
creator Yamashita, K.
Odanaka, S.
description This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.
doi_str_mv 10.1109/16.817572
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28814594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817572</ieee_id><sourcerecordid>28487272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOBFFKzVg1dPwYPiIXXfj6MEH4WCFz0v281EU9Kk7iaC_94tKSIe1NMwzLfDzA5CpwTPCMHmmsiZJkoouocmRAiVG8nlPppgTHRumGaH6CjGVUol53SCinnbQ_Bd24Lvs-hdU7cvKULrQt1lQ9ymLvOv9SZr4B2arP7-YN2V0Byjg8o1EU52cYqe726fiod88Xg_L24WuWdG97n3XGtcOeeFZIppLw0rKw2-BO6YA710xBtGGcauZEslJSyVI-AFdpRVjE3R5dh3E7q3AWJv13WatGlcC90QrSFcMmGYSPLiV0m1JlwY_g_ItaKK_g2VxGl2leD5D7jqhtCmf7Fai7QcJTihqxH50MUYoLKbUK9d-LAE2-0dLZF2vGOyZ6OtAeDL7YqfNJiW9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885230210</pqid></control><display><type>article</type><title>Interconnect scaling scenario using a chip level interconnect model</title><source>IEEE Electronic Library (IEL)</source><creator>Yamashita, K. ; Odanaka, S.</creator><creatorcontrib>Yamashita, K. ; Odanaka, S.</creatorcontrib><description>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.817572</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; CMOS ; CMOS integrated circuits ; Devices ; Insertion ; Materials selection ; Mathematical models ; Methodology ; Multilevel</subject><ispartof>IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.90-96</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</citedby><cites>FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/817572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Odanaka, S.</creatorcontrib><title>Interconnect scaling scenario using a chip level interconnect model</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</description><subject>Circuit design</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Devices</subject><subject>Insertion</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Multilevel</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLw0AQAOBFFKzVg1dPwYPiIXXfj6MEH4WCFz0v281EU9Kk7iaC_94tKSIe1NMwzLfDzA5CpwTPCMHmmsiZJkoouocmRAiVG8nlPppgTHRumGaH6CjGVUol53SCinnbQ_Bd24Lvs-hdU7cvKULrQt1lQ9ymLvOv9SZr4B2arP7-YN2V0Byjg8o1EU52cYqe726fiod88Xg_L24WuWdG97n3XGtcOeeFZIppLw0rKw2-BO6YA710xBtGGcauZEslJSyVI-AFdpRVjE3R5dh3E7q3AWJv13WatGlcC90QrSFcMmGYSPLiV0m1JlwY_g_ItaKK_g2VxGl2leD5D7jqhtCmf7Fai7QcJTihqxH50MUYoLKbUK9d-LAE2-0dLZF2vGOyZ6OtAeDL7YqfNJiW9A</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Yamashita, K.</creator><creator>Odanaka, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200001</creationdate><title>Interconnect scaling scenario using a chip level interconnect model</title><author>Yamashita, K. ; Odanaka, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-cc4880faac563738c693df8ecde4a3ae8ba1c932300ad3b766eb7a1ec50a23f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Circuit design</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Devices</topic><topic>Insertion</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Multilevel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Odanaka, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamashita, K.</au><au>Odanaka, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interconnect scaling scenario using a chip level interconnect model</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-01</date><risdate>2000</risdate><volume>47</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper describes an interconnect scaling scenario, which considers the impact of metal aspect ratio and pitch at each layer, new interconnect materials, and improved circuit design techniques. A new design methodology for a multilevel interconnect scheme is proposed on the basis of a chip level interconnect model. The design rule, the number of metal layers, and selection of interconnect materials at each device generation are projected using this methodology. It is shown that the 0.13-/spl mu/m CMOS generation requires not only new interconnect materials but also improved circuit design techniques such as variable pitch router and insertion of repeater buffers. A high-performance LSI in the 0.13-/spl mu/m CMOS generation needs seven layers using Cu interconnect and low-k dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.817572</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.90-96
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28814594
source IEEE Electronic Library (IEL)
subjects Circuit design
CMOS
CMOS integrated circuits
Devices
Insertion
Materials selection
Mathematical models
Methodology
Multilevel
title Interconnect scaling scenario using a chip level interconnect model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interconnect%20scaling%20scenario%20using%20a%20chip%20level%20interconnect%20model&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Yamashita,%20K.&rft.date=2000-01&rft.volume=47&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.817572&rft_dat=%3Cproquest_RIE%3E28487272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885230210&rft_id=info:pmid/&rft_ieee_id=817572&rfr_iscdi=true