Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding

The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-01, Vol.654, p.486-494
Hauptverfasser: Du, Changlong, Wan, Gengping, Wu, Lihong, Shi, Shaohua, Zhang, Yan, Deng, Zhen, Zhang, Ying, Wei, Qiyi, Li, Lianrui, Wang, Guizhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue
container_start_page 486
container_title Journal of colloid and interface science
container_volume 654
creator Du, Changlong
Wan, Gengping
Wu, Lihong
Shi, Shaohua
Zhang, Yan
Deng, Zhen
Zhang, Ying
Wei, Qiyi
Li, Lianrui
Wang, Guizhen
description The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, the pristine NiCoP fails to display excellent electrochemical performance due to its inferior rate performance and cycling stability. Herein, we design Fe doped NiCoP nanowire arrays on carbon cloth (Fe-NiCoP/CC) as the cathode for supercapacitors. The introduced Fe doping enable to increase in the electronic conductivity and enhance the adsorption of OH-, supported by the density functional theory (DFT) analysis. As a result, Fe-NiCoP/CC electrode displays a high areal capacity of 3.18 F cm-2 at 1 mA cm-2, superb rate capability (86.3 % capacity retention at 20 mA cm-2) and outstanding structure stability, superior to the NiCo/CC, FeNiCo/CC, and NiCoP/CC counterparts. Moreover, the assembled Fe-NiCoP/CC||VN/CNT/CC hybrid supercapacitor (HSC) device delivers a high energy density of 176.9 μWh cm-2 at the power density of 750 μW cm-2. More importantly, the designed electrodes and assembled HSC device exhibits excellent electromagnetic interference (EMI) shielding performance. This design concept presented in this paper can provide insights into the construction of multifunctional and high-performance flexible electronic devices.
doi_str_mv 10.1016/j.jcis.2023.10.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880103963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880103963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-967e4c141fdc2db543faac1e9a8d518fd4a5f45b420608673cbfe5f453d96ae73</originalsourceid><addsrcrecordid>eNotkctKxDAUhoMoOI6-gKss3XRMeu9SBi8DA250HdLkZJqaJjXJMM7OdxB8QJ_EFl0d-PjPz-F8CF1TsqKElrf9qhc6rFKSZhNYkbI-QQtKmiKpKMlO0YKQlCZN1VTn6CKEnhBKi6JZoO-NdzaRbgSJrRZvYH4-v4RruYm41QNEbowWeOxcGDstAVtu3UF7wN2x9VoGrJzHwRktkxB5BBz2I3jBRy50dD7gg44dhg8BxoCNGAyI6N3Adxbi1KxtBK_AgxXTbqfBSG13l-hMcRPg6n8u0evD_cv6Kdk-P27Wd9tEpDWJSVNWkAuaUyVFKtsizxTngkLDa1nQWsmcFyov2jwlJanLKhOtgplksik5VNkS3fz1jt697yFENugwn8otuH1gaV2T6YFNmU3R9C8qvAvBg2Kj1wP3R0YJmyWwns0S2CxhZpOE7BeHioKm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880103963</pqid></control><display><type>article</type><title>Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding</title><source>Access via ScienceDirect (Elsevier)</source><creator>Du, Changlong ; Wan, Gengping ; Wu, Lihong ; Shi, Shaohua ; Zhang, Yan ; Deng, Zhen ; Zhang, Ying ; Wei, Qiyi ; Li, Lianrui ; Wang, Guizhen</creator><creatorcontrib>Du, Changlong ; Wan, Gengping ; Wu, Lihong ; Shi, Shaohua ; Zhang, Yan ; Deng, Zhen ; Zhang, Ying ; Wei, Qiyi ; Li, Lianrui ; Wang, Guizhen</creatorcontrib><description>The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, the pristine NiCoP fails to display excellent electrochemical performance due to its inferior rate performance and cycling stability. Herein, we design Fe doped NiCoP nanowire arrays on carbon cloth (Fe-NiCoP/CC) as the cathode for supercapacitors. The introduced Fe doping enable to increase in the electronic conductivity and enhance the adsorption of OH-, supported by the density functional theory (DFT) analysis. As a result, Fe-NiCoP/CC electrode displays a high areal capacity of 3.18 F cm-2 at 1 mA cm-2, superb rate capability (86.3 % capacity retention at 20 mA cm-2) and outstanding structure stability, superior to the NiCo/CC, FeNiCo/CC, and NiCoP/CC counterparts. Moreover, the assembled Fe-NiCoP/CC||VN/CNT/CC hybrid supercapacitor (HSC) device delivers a high energy density of 176.9 μWh cm-2 at the power density of 750 μW cm-2. More importantly, the designed electrodes and assembled HSC device exhibits excellent electromagnetic interference (EMI) shielding performance. This design concept presented in this paper can provide insights into the construction of multifunctional and high-performance flexible electronic devices.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.10.068</identifier><language>eng</language><ispartof>Journal of colloid and interface science, 2024-01, Vol.654, p.486-494</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-967e4c141fdc2db543faac1e9a8d518fd4a5f45b420608673cbfe5f453d96ae73</citedby><cites>FETCH-LOGICAL-c280t-967e4c141fdc2db543faac1e9a8d518fd4a5f45b420608673cbfe5f453d96ae73</cites><orcidid>0000-0001-7308-2519 ; 0000-0001-5978-2041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Changlong</creatorcontrib><creatorcontrib>Wan, Gengping</creatorcontrib><creatorcontrib>Wu, Lihong</creatorcontrib><creatorcontrib>Shi, Shaohua</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Deng, Zhen</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Wei, Qiyi</creatorcontrib><creatorcontrib>Li, Lianrui</creatorcontrib><creatorcontrib>Wang, Guizhen</creatorcontrib><title>Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding</title><title>Journal of colloid and interface science</title><description>The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, the pristine NiCoP fails to display excellent electrochemical performance due to its inferior rate performance and cycling stability. Herein, we design Fe doped NiCoP nanowire arrays on carbon cloth (Fe-NiCoP/CC) as the cathode for supercapacitors. The introduced Fe doping enable to increase in the electronic conductivity and enhance the adsorption of OH-, supported by the density functional theory (DFT) analysis. As a result, Fe-NiCoP/CC electrode displays a high areal capacity of 3.18 F cm-2 at 1 mA cm-2, superb rate capability (86.3 % capacity retention at 20 mA cm-2) and outstanding structure stability, superior to the NiCo/CC, FeNiCo/CC, and NiCoP/CC counterparts. Moreover, the assembled Fe-NiCoP/CC||VN/CNT/CC hybrid supercapacitor (HSC) device delivers a high energy density of 176.9 μWh cm-2 at the power density of 750 μW cm-2. More importantly, the designed electrodes and assembled HSC device exhibits excellent electromagnetic interference (EMI) shielding performance. This design concept presented in this paper can provide insights into the construction of multifunctional and high-performance flexible electronic devices.</description><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkctKxDAUhoMoOI6-gKss3XRMeu9SBi8DA250HdLkZJqaJjXJMM7OdxB8QJ_EFl0d-PjPz-F8CF1TsqKElrf9qhc6rFKSZhNYkbI-QQtKmiKpKMlO0YKQlCZN1VTn6CKEnhBKi6JZoO-NdzaRbgSJrRZvYH4-v4RruYm41QNEbowWeOxcGDstAVtu3UF7wN2x9VoGrJzHwRktkxB5BBz2I3jBRy50dD7gg44dhg8BxoCNGAyI6N3Adxbi1KxtBK_AgxXTbqfBSG13l-hMcRPg6n8u0evD_cv6Kdk-P27Wd9tEpDWJSVNWkAuaUyVFKtsizxTngkLDa1nQWsmcFyov2jwlJanLKhOtgplksik5VNkS3fz1jt697yFENugwn8otuH1gaV2T6YFNmU3R9C8qvAvBg2Kj1wP3R0YJmyWwns0S2CxhZpOE7BeHioKm</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Du, Changlong</creator><creator>Wan, Gengping</creator><creator>Wu, Lihong</creator><creator>Shi, Shaohua</creator><creator>Zhang, Yan</creator><creator>Deng, Zhen</creator><creator>Zhang, Ying</creator><creator>Wei, Qiyi</creator><creator>Li, Lianrui</creator><creator>Wang, Guizhen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7308-2519</orcidid><orcidid>https://orcid.org/0000-0001-5978-2041</orcidid></search><sort><creationdate>20240115</creationdate><title>Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding</title><author>Du, Changlong ; Wan, Gengping ; Wu, Lihong ; Shi, Shaohua ; Zhang, Yan ; Deng, Zhen ; Zhang, Ying ; Wei, Qiyi ; Li, Lianrui ; Wang, Guizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-967e4c141fdc2db543faac1e9a8d518fd4a5f45b420608673cbfe5f453d96ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Changlong</creatorcontrib><creatorcontrib>Wan, Gengping</creatorcontrib><creatorcontrib>Wu, Lihong</creatorcontrib><creatorcontrib>Shi, Shaohua</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Deng, Zhen</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Wei, Qiyi</creatorcontrib><creatorcontrib>Li, Lianrui</creatorcontrib><creatorcontrib>Wang, Guizhen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Changlong</au><au>Wan, Gengping</au><au>Wu, Lihong</au><au>Shi, Shaohua</au><au>Zhang, Yan</au><au>Deng, Zhen</au><au>Zhang, Ying</au><au>Wei, Qiyi</au><au>Li, Lianrui</au><au>Wang, Guizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>654</volume><spage>486</spage><epage>494</epage><pages>486-494</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, the pristine NiCoP fails to display excellent electrochemical performance due to its inferior rate performance and cycling stability. Herein, we design Fe doped NiCoP nanowire arrays on carbon cloth (Fe-NiCoP/CC) as the cathode for supercapacitors. The introduced Fe doping enable to increase in the electronic conductivity and enhance the adsorption of OH-, supported by the density functional theory (DFT) analysis. As a result, Fe-NiCoP/CC electrode displays a high areal capacity of 3.18 F cm-2 at 1 mA cm-2, superb rate capability (86.3 % capacity retention at 20 mA cm-2) and outstanding structure stability, superior to the NiCo/CC, FeNiCo/CC, and NiCoP/CC counterparts. Moreover, the assembled Fe-NiCoP/CC||VN/CNT/CC hybrid supercapacitor (HSC) device delivers a high energy density of 176.9 μWh cm-2 at the power density of 750 μW cm-2. More importantly, the designed electrodes and assembled HSC device exhibits excellent electromagnetic interference (EMI) shielding performance. This design concept presented in this paper can provide insights into the construction of multifunctional and high-performance flexible electronic devices.</abstract><doi>10.1016/j.jcis.2023.10.068</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7308-2519</orcidid><orcidid>https://orcid.org/0000-0001-5978-2041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-01, Vol.654, p.486-494
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2880103963
source Access via ScienceDirect (Elsevier)
title Iron-doped nickel–cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron-doped%20nickel%E2%80%93cobalt%20bimetallic%20phosphide%20nanowire%20hybrids%20for%20solid-state%20supercapacitors%20with%20excellent%20electromagnetic%20interference%20shielding&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Du,%20Changlong&rft.date=2024-01-15&rft.volume=654&rft.spage=486&rft.epage=494&rft.pages=486-494&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.10.068&rft_dat=%3Cproquest_cross%3E2880103963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880103963&rft_id=info:pmid/&rfr_iscdi=true