KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster

Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A ( KAT6A) . ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 2023-12, Vol.142 (12), p.1705-1720
Hauptverfasser: Singh, Meghna, Spendlove, Sarah J., Wei, Angela, Bondhus, Leroy M., Nava, Aileen A., de L. Vitorino, Francisca N., Amano, Seth, Lee, Jacob, Echeverria, Gesenia, Gomez, Dianne, Garcia, Benjamin A., Arboleda, Valerie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1720
container_issue 12
container_start_page 1705
container_title Human genetics
container_volume 142
creator Singh, Meghna
Spendlove, Sarah J.
Wei, Angela
Bondhus, Leroy M.
Nava, Aileen A.
de L. Vitorino, Francisca N.
Amano, Seth
Lee, Jacob
Echeverria, Gesenia
Gomez, Dianne
Garcia, Benjamin A.
Arboleda, Valerie A.
description Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A ( KAT6A) . ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone–acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient ( n  = 8) and control ( n  = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster ( HOXC10 , HOXC11 , HOXC-AS3 , HOXC-AS2 , and HOTAIR ) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene–body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.
doi_str_mv 10.1007/s00439-023-02608-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880103671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774240778</galeid><sourcerecordid>A774240778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-63009b2e888a21cd6b4aa6d00253993ca543f10a0cc6b7cae5cc06626c5a7c733</originalsourceid><addsrcrecordid>eNp9klFr1TAUx4Mo7jr9Aj5IwBd96DxJ2qR9LBd1Y4PBvIJvIU1Pa0bbXJN2uG9v7u503iESQjgnv_8h5-RPyGsGJwxAfYgAuagy4CJtCWUmnpAVywXPGAfxlKxA5JBJxdQReRHjNQArKl48J0dClZKl_Iro83ojazous5mdnyJ1E61D4wdsTbb5bkYab6c2-BFpG9wNUty6HiecnaUB-2W4k1Hf0a2PMwbnAz29_Lamdlh28UvyrDNDxFf35zH5-unjZn2aXVx-PlvXF5nNFZszKQCqhmNZloYz28omN0a2ALwQVSWsKXLRMTBgrWyUNVhYC1JyaQujrBLimLzb190G_2PBOOvRRYvDYCb0S9S8LIGBSMNI6NtH6LVfwpRel6hK5EpA8RfVmwG1mzo_B2N3RXWtVM5zUKpM1Mk_qLRaHJ31E3Yu5Q8E7w8EiZnx59ybJUZ99uXqkOV71gYfY8BOb4MbTbjVDPTOAXrvAJ0coO8coHeDeHPf3dKM2P6R_P7yBIg9ENPV1GN4aP8_ZX8B_zS4JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893473051</pqid></control><display><type>article</type><title>KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Meghna ; Spendlove, Sarah J. ; Wei, Angela ; Bondhus, Leroy M. ; Nava, Aileen A. ; de L. Vitorino, Francisca N. ; Amano, Seth ; Lee, Jacob ; Echeverria, Gesenia ; Gomez, Dianne ; Garcia, Benjamin A. ; Arboleda, Valerie A.</creator><creatorcontrib>Singh, Meghna ; Spendlove, Sarah J. ; Wei, Angela ; Bondhus, Leroy M. ; Nava, Aileen A. ; de L. Vitorino, Francisca N. ; Amano, Seth ; Lee, Jacob ; Echeverria, Gesenia ; Gomez, Dianne ; Garcia, Benjamin A. ; Arboleda, Valerie A.</creatorcontrib><description>Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A ( KAT6A) . ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone–acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient ( n  = 8) and control ( n  = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster ( HOXC10 , HOXC11 , HOXC-AS3 , HOXC-AS2 , and HOTAIR ) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene–body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.</description><identifier>ISSN: 0340-6717</identifier><identifier>EISSN: 1432-1203</identifier><identifier>DOI: 10.1007/s00439-023-02608-3</identifier><identifier>PMID: 37861717</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylation ; Acetyltransferase ; Biomedical and Life Sciences ; Biomedicine ; Chromatin ; DNA binding proteins ; DNA methylation ; Enzymes ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Fibroblasts ; Gene Function ; Genes ; Genetic aspects ; Genetic disorders ; Genetic transcription ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Homeodomain Proteins - genetics ; Human Genetics ; Humans ; Intellectual disabilities ; Lysine ; Mass spectrometry ; Mass spectroscopy ; Medical research ; Medicine, Experimental ; Metabolic Diseases ; Methylation ; Molecular Medicine ; Mutation ; Original Investigation ; Pattern formation ; Post-translation ; Proteomics ; Transcription factors ; Transcription Factors - genetics ; Transcriptomes ; Transcriptomics</subject><ispartof>Human genetics, 2023-12, Vol.142 (12), p.1705-1720</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c471t-63009b2e888a21cd6b4aa6d00253993ca543f10a0cc6b7cae5cc06626c5a7c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00439-023-02608-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00439-023-02608-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37861717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Meghna</creatorcontrib><creatorcontrib>Spendlove, Sarah J.</creatorcontrib><creatorcontrib>Wei, Angela</creatorcontrib><creatorcontrib>Bondhus, Leroy M.</creatorcontrib><creatorcontrib>Nava, Aileen A.</creatorcontrib><creatorcontrib>de L. Vitorino, Francisca N.</creatorcontrib><creatorcontrib>Amano, Seth</creatorcontrib><creatorcontrib>Lee, Jacob</creatorcontrib><creatorcontrib>Echeverria, Gesenia</creatorcontrib><creatorcontrib>Gomez, Dianne</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Arboleda, Valerie A.</creatorcontrib><title>KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster</title><title>Human genetics</title><addtitle>Hum. Genet</addtitle><addtitle>Hum Genet</addtitle><description>Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A ( KAT6A) . ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone–acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient ( n  = 8) and control ( n  = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster ( HOXC10 , HOXC11 , HOXC-AS3 , HOXC-AS2 , and HOTAIR ) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene–body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.</description><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Chromatin</subject><subject>DNA binding proteins</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Fibroblasts</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic disorders</subject><subject>Genetic transcription</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Homeodomain Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Intellectual disabilities</subject><subject>Lysine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Metabolic Diseases</subject><subject>Methylation</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Original Investigation</subject><subject>Pattern formation</subject><subject>Post-translation</subject><subject>Proteomics</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>0340-6717</issn><issn>1432-1203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9klFr1TAUx4Mo7jr9Aj5IwBd96DxJ2qR9LBd1Y4PBvIJvIU1Pa0bbXJN2uG9v7u503iESQjgnv_8h5-RPyGsGJwxAfYgAuagy4CJtCWUmnpAVywXPGAfxlKxA5JBJxdQReRHjNQArKl48J0dClZKl_Iro83ojazous5mdnyJ1E61D4wdsTbb5bkYab6c2-BFpG9wNUty6HiecnaUB-2W4k1Hf0a2PMwbnAz29_Lamdlh28UvyrDNDxFf35zH5-unjZn2aXVx-PlvXF5nNFZszKQCqhmNZloYz28omN0a2ALwQVSWsKXLRMTBgrWyUNVhYC1JyaQujrBLimLzb190G_2PBOOvRRYvDYCb0S9S8LIGBSMNI6NtH6LVfwpRel6hK5EpA8RfVmwG1mzo_B2N3RXWtVM5zUKpM1Mk_qLRaHJ31E3Yu5Q8E7w8EiZnx59ybJUZ99uXqkOV71gYfY8BOb4MbTbjVDPTOAXrvAJ0coO8coHeDeHPf3dKM2P6R_P7yBIg9ENPV1GN4aP8_ZX8B_zS4JA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Singh, Meghna</creator><creator>Spendlove, Sarah J.</creator><creator>Wei, Angela</creator><creator>Bondhus, Leroy M.</creator><creator>Nava, Aileen A.</creator><creator>de L. Vitorino, Francisca N.</creator><creator>Amano, Seth</creator><creator>Lee, Jacob</creator><creator>Echeverria, Gesenia</creator><creator>Gomez, Dianne</creator><creator>Garcia, Benjamin A.</creator><creator>Arboleda, Valerie A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster</title><author>Singh, Meghna ; Spendlove, Sarah J. ; Wei, Angela ; Bondhus, Leroy M. ; Nava, Aileen A. ; de L. Vitorino, Francisca N. ; Amano, Seth ; Lee, Jacob ; Echeverria, Gesenia ; Gomez, Dianne ; Garcia, Benjamin A. ; Arboleda, Valerie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-63009b2e888a21cd6b4aa6d00253993ca543f10a0cc6b7cae5cc06626c5a7c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Chromatin</topic><topic>DNA binding proteins</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Fibroblasts</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic disorders</topic><topic>Genetic transcription</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Homeodomain Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Intellectual disabilities</topic><topic>Lysine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Metabolic Diseases</topic><topic>Methylation</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Original Investigation</topic><topic>Pattern formation</topic><topic>Post-translation</topic><topic>Proteomics</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Meghna</creatorcontrib><creatorcontrib>Spendlove, Sarah J.</creatorcontrib><creatorcontrib>Wei, Angela</creatorcontrib><creatorcontrib>Bondhus, Leroy M.</creatorcontrib><creatorcontrib>Nava, Aileen A.</creatorcontrib><creatorcontrib>de L. Vitorino, Francisca N.</creatorcontrib><creatorcontrib>Amano, Seth</creatorcontrib><creatorcontrib>Lee, Jacob</creatorcontrib><creatorcontrib>Echeverria, Gesenia</creatorcontrib><creatorcontrib>Gomez, Dianne</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Arboleda, Valerie A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Meghna</au><au>Spendlove, Sarah J.</au><au>Wei, Angela</au><au>Bondhus, Leroy M.</au><au>Nava, Aileen A.</au><au>de L. Vitorino, Francisca N.</au><au>Amano, Seth</au><au>Lee, Jacob</au><au>Echeverria, Gesenia</au><au>Gomez, Dianne</au><au>Garcia, Benjamin A.</au><au>Arboleda, Valerie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster</atitle><jtitle>Human genetics</jtitle><stitle>Hum. Genet</stitle><addtitle>Hum Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>142</volume><issue>12</issue><spage>1705</spage><epage>1720</epage><pages>1705-1720</pages><issn>0340-6717</issn><eissn>1432-1203</eissn><abstract>Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A ( KAT6A) . ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone–acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient ( n  = 8) and control ( n  = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster ( HOXC10 , HOXC11 , HOXC-AS3 , HOXC-AS2 , and HOTAIR ) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene–body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37861717</pmid><doi>10.1007/s00439-023-02608-3</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-6717
ispartof Human genetics, 2023-12, Vol.142 (12), p.1705-1720
issn 0340-6717
1432-1203
language eng
recordid cdi_proquest_miscellaneous_2880103671
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acetylation
Acetyltransferase
Biomedical and Life Sciences
Biomedicine
Chromatin
DNA binding proteins
DNA methylation
Enzymes
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Fibroblasts
Gene Function
Genes
Genetic aspects
Genetic disorders
Genetic transcription
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histones
Histones - genetics
Histones - metabolism
Homeodomain Proteins - genetics
Human Genetics
Humans
Intellectual disabilities
Lysine
Mass spectrometry
Mass spectroscopy
Medical research
Medicine, Experimental
Metabolic Diseases
Methylation
Molecular Medicine
Mutation
Original Investigation
Pattern formation
Post-translation
Proteomics
Transcription factors
Transcription Factors - genetics
Transcriptomes
Transcriptomics
title KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KAT6A%20mutations%20in%20Arboleda-Tham%20syndrome%20drive%20epigenetic%20regulation%20of%20posterior%20HOXC%20cluster&rft.jtitle=Human%20genetics&rft.au=Singh,%20Meghna&rft.date=2023-12-01&rft.volume=142&rft.issue=12&rft.spage=1705&rft.epage=1720&rft.pages=1705-1720&rft.issn=0340-6717&rft.eissn=1432-1203&rft_id=info:doi/10.1007/s00439-023-02608-3&rft_dat=%3Cgale_proqu%3EA774240778%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893473051&rft_id=info:pmid/37861717&rft_galeid=A774240778&rfr_iscdi=true