Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25

The abundant oxygen‐related defects (e.g., O vacancies, O–H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2306724-n/a
Hauptverfasser: Su, Hang, Xu, Zhuo, He, Xilai, Yao, Yuying, Zheng, Xinxin, She, Yutong, Zhu, Yujie, Zhang, Jing, Liu, Shengzhong (Frank)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2306724
container_title Advanced materials (Weinheim)
container_volume 36
creator Su, Hang
Xu, Zhuo
He, Xilai
Yao, Yuying
Zheng, Xinxin
She, Yutong
Zhu, Yujie
Zhang, Jing
Liu, Shengzhong (Frank)
description The abundant oxygen‐related defects (e.g., O vacancies, O–H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2. Theoretical calculations show that the HFSTA‐TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier‐extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2. Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2, crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25–30%. The SEE of a buried interface paves a new way toward high‐efficiency, stable perovskite solar cells. The abundant oxygen‐related defects seriously impair the photovoltaic performance and stability of perovskite solar cells. Here, a novel surface energy engineering (SEE) is developed by applying a surfactant HFSTA on the surface of the TiO2 substrate. By combining the passivation of TiO2, crystallization process modulation and stress relief, PCE of 25.03% is achieved on champion device along with improved stability.
doi_str_mv 10.1002/adma.202306724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880102841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880102841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4674-fa49f0b24a6198d3c41fc766c34f864c200d009d1cafe9085fa740afec9d5ca83</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhyhFZ4sIly9hxHPu4bBdaqahIC2fL64y3Ltm42Emr_HtcbSkSF05vDt88vZlHyFsGSwbAP9ruYJcceA2y5eIZWbCGs0qAbp6TBei6qbQU6oS8yvkGALQE-ZKc1K2StRTNgsTtlLx1SDcDpv1cZB8GxBSGPY2efppSwI5eDCMeMR8TPQ_7636m29HueqTfMMW7_DOMSLext4muse8zvQ_jNd14H1zAwc306g4T5c1r8sLbPuObRz0lPz5vvq_Pq8urLxfr1WXlhGxF5a3QHnZcWMm06monmHetlK4WXknhOEBXrumYsx41qMbbVkCZne4aZ1V9Sj4cfW9T_DVhHs0hZFeS2QHjlA1XChhwJVhB3_-D3sQpDSWd4Zpx3UgOslDLI-VSzDmhN7cpHGyaDQPzUIV5qMI8VVEW3j3aTrsDdk_4n98XQB-B-9Dj_B87szr7uvpr_hv9RZTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912956206</pqid></control><display><type>article</type><title>Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25</title><source>Access via Wiley Online Library</source><creator>Su, Hang ; Xu, Zhuo ; He, Xilai ; Yao, Yuying ; Zheng, Xinxin ; She, Yutong ; Zhu, Yujie ; Zhang, Jing ; Liu, Shengzhong (Frank)</creator><creatorcontrib>Su, Hang ; Xu, Zhuo ; He, Xilai ; Yao, Yuying ; Zheng, Xinxin ; She, Yutong ; Zhu, Yujie ; Zhang, Jing ; Liu, Shengzhong (Frank)</creatorcontrib><description>The abundant oxygen‐related defects (e.g., O vacancies, O–H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2. Theoretical calculations show that the HFSTA‐TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier‐extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2. Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2, crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25–30%. The SEE of a buried interface paves a new way toward high‐efficiency, stable perovskite solar cells. The abundant oxygen‐related defects seriously impair the photovoltaic performance and stability of perovskite solar cells. Here, a novel surface energy engineering (SEE) is developed by applying a surfactant HFSTA on the surface of the TiO2 substrate. By combining the passivation of TiO2, crystallization process modulation and stress relief, PCE of 25.03% is achieved on champion device along with improved stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202306724</identifier><identifier>PMID: 37863645</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>buried interface ; Compressive properties ; Crystal defects ; Crystallization ; Efficiency ; Electron transport ; Nucleation ; perovskite solar cell ; Perovskites ; Photovoltaic cells ; Relative humidity ; Solar cells ; stress relief ; Surface energy ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2306724-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4674-fa49f0b24a6198d3c41fc766c34f864c200d009d1cafe9085fa740afec9d5ca83</citedby><cites>FETCH-LOGICAL-c4674-fa49f0b24a6198d3c41fc766c34f864c200d009d1cafe9085fa740afec9d5ca83</cites><orcidid>0000-0002-6338-852X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202306724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202306724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37863645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>He, Xilai</creatorcontrib><creatorcontrib>Yao, Yuying</creatorcontrib><creatorcontrib>Zheng, Xinxin</creatorcontrib><creatorcontrib>She, Yutong</creatorcontrib><creatorcontrib>Zhu, Yujie</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><title>Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The abundant oxygen‐related defects (e.g., O vacancies, O–H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2. Theoretical calculations show that the HFSTA‐TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier‐extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2. Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2, crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25–30%. The SEE of a buried interface paves a new way toward high‐efficiency, stable perovskite solar cells. The abundant oxygen‐related defects seriously impair the photovoltaic performance and stability of perovskite solar cells. Here, a novel surface energy engineering (SEE) is developed by applying a surfactant HFSTA on the surface of the TiO2 substrate. By combining the passivation of TiO2, crystallization process modulation and stress relief, PCE of 25.03% is achieved on champion device along with improved stability.</description><subject>buried interface</subject><subject>Compressive properties</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Nucleation</subject><subject>perovskite solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>stress relief</subject><subject>Surface energy</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EokvhyhFZ4sIly9hxHPu4bBdaqahIC2fL64y3Ltm42Emr_HtcbSkSF05vDt88vZlHyFsGSwbAP9ruYJcceA2y5eIZWbCGs0qAbp6TBei6qbQU6oS8yvkGALQE-ZKc1K2StRTNgsTtlLx1SDcDpv1cZB8GxBSGPY2efppSwI5eDCMeMR8TPQ_7636m29HueqTfMMW7_DOMSLext4muse8zvQ_jNd14H1zAwc306g4T5c1r8sLbPuObRz0lPz5vvq_Pq8urLxfr1WXlhGxF5a3QHnZcWMm06monmHetlK4WXknhOEBXrumYsx41qMbbVkCZne4aZ1V9Sj4cfW9T_DVhHs0hZFeS2QHjlA1XChhwJVhB3_-D3sQpDSWd4Zpx3UgOslDLI-VSzDmhN7cpHGyaDQPzUIV5qMI8VVEW3j3aTrsDdk_4n98XQB-B-9Dj_B87szr7uvpr_hv9RZTQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Su, Hang</creator><creator>Xu, Zhuo</creator><creator>He, Xilai</creator><creator>Yao, Yuying</creator><creator>Zheng, Xinxin</creator><creator>She, Yutong</creator><creator>Zhu, Yujie</creator><creator>Zhang, Jing</creator><creator>Liu, Shengzhong (Frank)</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6338-852X</orcidid></search><sort><creationdate>20240101</creationdate><title>Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25</title><author>Su, Hang ; Xu, Zhuo ; He, Xilai ; Yao, Yuying ; Zheng, Xinxin ; She, Yutong ; Zhu, Yujie ; Zhang, Jing ; Liu, Shengzhong (Frank)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4674-fa49f0b24a6198d3c41fc766c34f864c200d009d1cafe9085fa740afec9d5ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>buried interface</topic><topic>Compressive properties</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Nucleation</topic><topic>perovskite solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>stress relief</topic><topic>Surface energy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>He, Xilai</creatorcontrib><creatorcontrib>Yao, Yuying</creatorcontrib><creatorcontrib>Zheng, Xinxin</creatorcontrib><creatorcontrib>She, Yutong</creatorcontrib><creatorcontrib>Zhu, Yujie</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Hang</au><au>Xu, Zhuo</au><au>He, Xilai</au><au>Yao, Yuying</au><au>Zheng, Xinxin</au><au>She, Yutong</au><au>Zhu, Yujie</au><au>Zhang, Jing</au><au>Liu, Shengzhong (Frank)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2306724</spage><epage>n/a</epage><pages>e2306724-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The abundant oxygen‐related defects (e.g., O vacancies, O–H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2. Theoretical calculations show that the HFSTA‐TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier‐extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2. Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2, crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25–30%. The SEE of a buried interface paves a new way toward high‐efficiency, stable perovskite solar cells. The abundant oxygen‐related defects seriously impair the photovoltaic performance and stability of perovskite solar cells. Here, a novel surface energy engineering (SEE) is developed by applying a surfactant HFSTA on the surface of the TiO2 substrate. By combining the passivation of TiO2, crystallization process modulation and stress relief, PCE of 25.03% is achieved on champion device along with improved stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37863645</pmid><doi>10.1002/adma.202306724</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6338-852X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2306724-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2880102841
source Access via Wiley Online Library
subjects buried interface
Compressive properties
Crystal defects
Crystallization
Efficiency
Electron transport
Nucleation
perovskite solar cell
Perovskites
Photovoltaic cells
Relative humidity
Solar cells
stress relief
Surface energy
Titanium dioxide
title Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Energy%20Engineering%20of%20Buried%20Interface%20for%20Highly%20Stable%20Perovskite%20Solar%20Cells%20with%20Efficiency%20Over%2025&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Su,%20Hang&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2306724&rft.epage=n/a&rft.pages=e2306724-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202306724&rft_dat=%3Cproquest_cross%3E2880102841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912956206&rft_id=info:pmid/37863645&rfr_iscdi=true