Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)

Background Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease (“Flip‐Flop” [FF] phenomenon) can occur with or without systemic treatment and are often referre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Allergy (Copenhagen) 2024-01, Vol.79 (1), p.164-173
Hauptverfasser: Müller, Svenja, Welchowski, Thomas, Schmid, Matthias, Maintz, Laura, Herrmann, Nadine, Wilsmann‐Theis, Dagmar, Royeck, Thorben, Havenith, Regina, Bieber, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 1
container_start_page 164
container_title Allergy (Copenhagen)
container_volume 79
creator Müller, Svenja
Welchowski, Thomas
Schmid, Matthias
Maintz, Laura
Herrmann, Nadine
Wilsmann‐Theis, Dagmar
Royeck, Thorben
Havenith, Regina
Bieber, Thomas
description Background Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease (“Flip‐Flop” [FF] phenomenon) can occur with or without systemic treatment and are often referred to as paradoxical reactions under biological therapy. Methods The objective was to develop a diagnostic algorithm by combining clinical criteria of AD and PV to identify FF patients. The algorithm was prospectively validated in patients enrolled in the CK‐CARE registry in Bonn, Germany. Afterward, algorithm refinements were implemented based on machine learning. Results Three hundred adult Caucasian patients were included in the validation study (n = 238 with AD, n = 49 with PV, n = 13 with FF; mean age 41.2 years; n = 161 [53.7%] female). The total FF scores of the PV and AD groups differed significantly from the FF group in the validation data (p 
doi_str_mv 10.1111/all.15921
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880101119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908006470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-73d5ad444055ca5c34759f39a20501fea3da789a93cbfeacec34f9077646b3d23</originalsourceid><addsrcrecordid>eNp1kUFOGzEUhq2KqqS0Cy5QWWIDiwF7PM7YSwRNixSJDawtx_OGGHnGU9shyi4XQOoB4HI5SQ1Du6iEN9azPn3P-n-EDik5pfmcaedOKZcl_YAmlElRSCn5HpoQSnhRcSb20ecY7wkhdSnJJ7TPajGtmCQT9HgJD-D80EGfsG-xxsbZ3hrtsHZ3Pti07HDyeAjQWJPwsITep81gDY5rm8wSIl5AWgP0WCf_8t5A6HSyyUas-wYPMVt0zNNxWgLebZ9mzg677e9ZXrvbPo_KvN_3J1_Qx1a7CF_f7gN0O_t-c_GzmF__uLo4nxeGCUGLmjVcN1VVEc6N5oZVNZctk7oknNAWNGt0LaSWzCzyZCATrSR1Pa2mC9aU7AAdj94h-F8riEl1NhpwTvfgV1GVQuTscrQyo0f_ofd-Ffr8O5WzFIRMq5pk6mSkTPAxBmjVEGynw0ZRol46Urkj9dpRZr-9GVeLDpp_5N9SMnA2AmvrYPO-SZ3P56PyD8VOn7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908006470</pqid></control><display><type>article</type><title>Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Müller, Svenja ; Welchowski, Thomas ; Schmid, Matthias ; Maintz, Laura ; Herrmann, Nadine ; Wilsmann‐Theis, Dagmar ; Royeck, Thorben ; Havenith, Regina ; Bieber, Thomas</creator><creatorcontrib>Müller, Svenja ; Welchowski, Thomas ; Schmid, Matthias ; Maintz, Laura ; Herrmann, Nadine ; Wilsmann‐Theis, Dagmar ; Royeck, Thorben ; Havenith, Regina ; Bieber, Thomas</creatorcontrib><description>Background Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease (“Flip‐Flop” [FF] phenomenon) can occur with or without systemic treatment and are often referred to as paradoxical reactions under biological therapy. Methods The objective was to develop a diagnostic algorithm by combining clinical criteria of AD and PV to identify FF patients. The algorithm was prospectively validated in patients enrolled in the CK‐CARE registry in Bonn, Germany. Afterward, algorithm refinements were implemented based on machine learning. Results Three hundred adult Caucasian patients were included in the validation study (n = 238 with AD, n = 49 with PV, n = 13 with FF; mean age 41.2 years; n = 161 [53.7%] female). The total FF scores of the PV and AD groups differed significantly from the FF group in the validation data (p &lt; .001). The predictive mean generalized Youden‐Index of the initial model was 78.9% [95% confidence interval 72.0%–85.6%] and the accuracy was 89.7%. Disease group‐specific sensitivity was 100% (FF), 95.0% (AD), and 61.2% (PV). The specificity was 89.2% (FF), 100% (AD), and 100% (PV), respectively. Conclusion The FF algorithm represents the first validated tool to identify FF patients. Phenotypic switches from AD to PV or vice versa can occur spontaneouslyor during biologic therapy (“paradoxical reactions”) in predisposed patients (so‐called “Flip‐Flop” (FF) patients). We developed the first clinical algorithm to identify FF patients by the combination of medical history and examination criteria typical for AD and PV. The validation study with 300 Caucasian patients with AD, PV and FF showed a good prediction accuracy (89.7%). The model was improved using machine learning.Abbreviations: AD, atopic dermatitis; FF, Flip‐Flop; PV, psoriasis vulgaris</description><identifier>ISSN: 0105-4538</identifier><identifier>ISSN: 1398-9995</identifier><identifier>EISSN: 1398-9995</identifier><identifier>DOI: 10.1111/all.15921</identifier><identifier>PMID: 37864390</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Atopic dermatitis ; Dermatitis ; differential diagnosis ; Eczema ; Medical diagnosis ; Patients ; Precision medicine ; Psoriasis ; Psoriasis vulgaris ; Therapeutic targets ; validation study</subject><ispartof>Allergy (Copenhagen), 2024-01, Vol.79 (1), p.164-173</ispartof><rights>2023 The Authors. published by European Academy of Allergy and Clinical Immunology and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-73d5ad444055ca5c34759f39a20501fea3da789a93cbfeacec34f9077646b3d23</citedby><cites>FETCH-LOGICAL-c3881-73d5ad444055ca5c34759f39a20501fea3da789a93cbfeacec34f9077646b3d23</cites><orcidid>0000-0003-4924-2281 ; 0000-0003-2940-647X ; 0000-0002-8800-3817 ; 0000-0001-6053-1530 ; 0000-0002-2118-959X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fall.15921$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fall.15921$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37864390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Svenja</creatorcontrib><creatorcontrib>Welchowski, Thomas</creatorcontrib><creatorcontrib>Schmid, Matthias</creatorcontrib><creatorcontrib>Maintz, Laura</creatorcontrib><creatorcontrib>Herrmann, Nadine</creatorcontrib><creatorcontrib>Wilsmann‐Theis, Dagmar</creatorcontrib><creatorcontrib>Royeck, Thorben</creatorcontrib><creatorcontrib>Havenith, Regina</creatorcontrib><creatorcontrib>Bieber, Thomas</creatorcontrib><title>Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)</title><title>Allergy (Copenhagen)</title><addtitle>Allergy</addtitle><description>Background Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease (“Flip‐Flop” [FF] phenomenon) can occur with or without systemic treatment and are often referred to as paradoxical reactions under biological therapy. Methods The objective was to develop a diagnostic algorithm by combining clinical criteria of AD and PV to identify FF patients. The algorithm was prospectively validated in patients enrolled in the CK‐CARE registry in Bonn, Germany. Afterward, algorithm refinements were implemented based on machine learning. Results Three hundred adult Caucasian patients were included in the validation study (n = 238 with AD, n = 49 with PV, n = 13 with FF; mean age 41.2 years; n = 161 [53.7%] female). The total FF scores of the PV and AD groups differed significantly from the FF group in the validation data (p &lt; .001). The predictive mean generalized Youden‐Index of the initial model was 78.9% [95% confidence interval 72.0%–85.6%] and the accuracy was 89.7%. Disease group‐specific sensitivity was 100% (FF), 95.0% (AD), and 61.2% (PV). The specificity was 89.2% (FF), 100% (AD), and 100% (PV), respectively. Conclusion The FF algorithm represents the first validated tool to identify FF patients. Phenotypic switches from AD to PV or vice versa can occur spontaneouslyor during biologic therapy (“paradoxical reactions”) in predisposed patients (so‐called “Flip‐Flop” (FF) patients). We developed the first clinical algorithm to identify FF patients by the combination of medical history and examination criteria typical for AD and PV. The validation study with 300 Caucasian patients with AD, PV and FF showed a good prediction accuracy (89.7%). The model was improved using machine learning.Abbreviations: AD, atopic dermatitis; FF, Flip‐Flop; PV, psoriasis vulgaris</description><subject>Algorithms</subject><subject>Atopic dermatitis</subject><subject>Dermatitis</subject><subject>differential diagnosis</subject><subject>Eczema</subject><subject>Medical diagnosis</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Psoriasis</subject><subject>Psoriasis vulgaris</subject><subject>Therapeutic targets</subject><subject>validation study</subject><issn>0105-4538</issn><issn>1398-9995</issn><issn>1398-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUFOGzEUhq2KqqS0Cy5QWWIDiwF7PM7YSwRNixSJDawtx_OGGHnGU9shyi4XQOoB4HI5SQ1Du6iEN9azPn3P-n-EDik5pfmcaedOKZcl_YAmlElRSCn5HpoQSnhRcSb20ecY7wkhdSnJJ7TPajGtmCQT9HgJD-D80EGfsG-xxsbZ3hrtsHZ3Pti07HDyeAjQWJPwsITep81gDY5rm8wSIl5AWgP0WCf_8t5A6HSyyUas-wYPMVt0zNNxWgLebZ9mzg677e9ZXrvbPo_KvN_3J1_Qx1a7CF_f7gN0O_t-c_GzmF__uLo4nxeGCUGLmjVcN1VVEc6N5oZVNZctk7oknNAWNGt0LaSWzCzyZCATrSR1Pa2mC9aU7AAdj94h-F8riEl1NhpwTvfgV1GVQuTscrQyo0f_ofd-Ffr8O5WzFIRMq5pk6mSkTPAxBmjVEGynw0ZRol46Urkj9dpRZr-9GVeLDpp_5N9SMnA2AmvrYPO-SZ3P56PyD8VOn7I</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Müller, Svenja</creator><creator>Welchowski, Thomas</creator><creator>Schmid, Matthias</creator><creator>Maintz, Laura</creator><creator>Herrmann, Nadine</creator><creator>Wilsmann‐Theis, Dagmar</creator><creator>Royeck, Thorben</creator><creator>Havenith, Regina</creator><creator>Bieber, Thomas</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4924-2281</orcidid><orcidid>https://orcid.org/0000-0003-2940-647X</orcidid><orcidid>https://orcid.org/0000-0002-8800-3817</orcidid><orcidid>https://orcid.org/0000-0001-6053-1530</orcidid><orcidid>https://orcid.org/0000-0002-2118-959X</orcidid></search><sort><creationdate>202401</creationdate><title>Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)</title><author>Müller, Svenja ; Welchowski, Thomas ; Schmid, Matthias ; Maintz, Laura ; Herrmann, Nadine ; Wilsmann‐Theis, Dagmar ; Royeck, Thorben ; Havenith, Regina ; Bieber, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-73d5ad444055ca5c34759f39a20501fea3da789a93cbfeacec34f9077646b3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atopic dermatitis</topic><topic>Dermatitis</topic><topic>differential diagnosis</topic><topic>Eczema</topic><topic>Medical diagnosis</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Psoriasis</topic><topic>Psoriasis vulgaris</topic><topic>Therapeutic targets</topic><topic>validation study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Svenja</creatorcontrib><creatorcontrib>Welchowski, Thomas</creatorcontrib><creatorcontrib>Schmid, Matthias</creatorcontrib><creatorcontrib>Maintz, Laura</creatorcontrib><creatorcontrib>Herrmann, Nadine</creatorcontrib><creatorcontrib>Wilsmann‐Theis, Dagmar</creatorcontrib><creatorcontrib>Royeck, Thorben</creatorcontrib><creatorcontrib>Havenith, Regina</creatorcontrib><creatorcontrib>Bieber, Thomas</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Allergy (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Svenja</au><au>Welchowski, Thomas</au><au>Schmid, Matthias</au><au>Maintz, Laura</au><au>Herrmann, Nadine</au><au>Wilsmann‐Theis, Dagmar</au><au>Royeck, Thorben</au><au>Havenith, Regina</au><au>Bieber, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)</atitle><jtitle>Allergy (Copenhagen)</jtitle><addtitle>Allergy</addtitle><date>2024-01</date><risdate>2024</risdate><volume>79</volume><issue>1</issue><spage>164</spage><epage>173</epage><pages>164-173</pages><issn>0105-4538</issn><issn>1398-9995</issn><eissn>1398-9995</eissn><abstract>Background Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease (“Flip‐Flop” [FF] phenomenon) can occur with or without systemic treatment and are often referred to as paradoxical reactions under biological therapy. Methods The objective was to develop a diagnostic algorithm by combining clinical criteria of AD and PV to identify FF patients. The algorithm was prospectively validated in patients enrolled in the CK‐CARE registry in Bonn, Germany. Afterward, algorithm refinements were implemented based on machine learning. Results Three hundred adult Caucasian patients were included in the validation study (n = 238 with AD, n = 49 with PV, n = 13 with FF; mean age 41.2 years; n = 161 [53.7%] female). The total FF scores of the PV and AD groups differed significantly from the FF group in the validation data (p &lt; .001). The predictive mean generalized Youden‐Index of the initial model was 78.9% [95% confidence interval 72.0%–85.6%] and the accuracy was 89.7%. Disease group‐specific sensitivity was 100% (FF), 95.0% (AD), and 61.2% (PV). The specificity was 89.2% (FF), 100% (AD), and 100% (PV), respectively. Conclusion The FF algorithm represents the first validated tool to identify FF patients. Phenotypic switches from AD to PV or vice versa can occur spontaneouslyor during biologic therapy (“paradoxical reactions”) in predisposed patients (so‐called “Flip‐Flop” (FF) patients). We developed the first clinical algorithm to identify FF patients by the combination of medical history and examination criteria typical for AD and PV. The validation study with 300 Caucasian patients with AD, PV and FF showed a good prediction accuracy (89.7%). The model was improved using machine learning.Abbreviations: AD, atopic dermatitis; FF, Flip‐Flop; PV, psoriasis vulgaris</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>37864390</pmid><doi>10.1111/all.15921</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4924-2281</orcidid><orcidid>https://orcid.org/0000-0003-2940-647X</orcidid><orcidid>https://orcid.org/0000-0002-8800-3817</orcidid><orcidid>https://orcid.org/0000-0001-6053-1530</orcidid><orcidid>https://orcid.org/0000-0002-2118-959X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0105-4538
ispartof Allergy (Copenhagen), 2024-01, Vol.79 (1), p.164-173
issn 0105-4538
1398-9995
1398-9995
language eng
recordid cdi_proquest_miscellaneous_2880101119
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Atopic dermatitis
Dermatitis
differential diagnosis
Eczema
Medical diagnosis
Patients
Precision medicine
Psoriasis
Psoriasis vulgaris
Therapeutic targets
validation study
title Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the “Flip‐Flop” phenomenon)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20clinical%20algorithm%20to%20predict%20phenotypic%20switches%20between%20atopic%20dermatitis%20and%20psoriasis%20(the%20%E2%80%9CFlip%E2%80%90Flop%E2%80%9D%20phenomenon)&rft.jtitle=Allergy%20(Copenhagen)&rft.au=M%C3%BCller,%20Svenja&rft.date=2024-01&rft.volume=79&rft.issue=1&rft.spage=164&rft.epage=173&rft.pages=164-173&rft.issn=0105-4538&rft.eissn=1398-9995&rft_id=info:doi/10.1111/all.15921&rft_dat=%3Cproquest_cross%3E2908006470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908006470&rft_id=info:pmid/37864390&rfr_iscdi=true