An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes
Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning frame...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2022-11, Vol.150, p.106189, Article 106189 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106189 |
container_title | Computers in biology and medicine |
container_volume | 150 |
creator | Ji, Yazhou Shi, Beibei Li, Yuanyuan |
description | Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
•The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis. |
doi_str_mv | 10.1016/j.compbiomed.2022.106189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880099406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522008976</els_id><sourcerecordid>2880099406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhoNY7LH6FyTgjTd7nGS_kstarIqFQtHrkM1O2hw2yZpki-2vdw_bIngjuQhknjczzEMIZbBnwLqPh72Jfh5c9DjuOXC-PndMyBdkx0QvK2jr5iXZATCoGsHbU_I65wMANFDDK3Ja96KVXDQ7ks8Dxfs4LcXFoNMD9drcuYB0Qp2CC7fUxkT9MhU3T0j9A07Ra7rkY-lmCbdIvy-laHo9F-fdIyZqU_Rbgpo7nbQpmFwuzlAXRvyN-Q05sXrK-PbpPiM_Lz__uPhaXV1_-XZxflWZBnipJDIpxNDaxrKxE6MZeD2iZhLWgw1npmmHlvfYcmmFMG0vre1GLQbLuIW6PiMftn_nFH8tmIvyLhucJh0wLllxIQCkbKBb0ff_oIe4pLBOp3jPpWz7nouVEhtlUsw5oVVzcn7dmmKgjmLUQf0Vo45i1CZmjb57arAMx9pz8NnECnzaAFw3cu8wqWwcBoOjS2iKGqP7f5c_9Xul6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729957728</pqid></control><display><type>article</type><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</creator><creatorcontrib>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</creatorcontrib><description>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
•The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.106189</identifier><identifier>PMID: 37859284</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Benchmarking ; Correlation coefficient ; Correlation coefficients ; Diagnosis ; Feature selection ; Humans ; Kernel extreme learning machine ; Kernels ; Learning algorithms ; Machine Learning ; Malignancy ; Multi characteristic indexes ; Multiple myeloma ; Multiple Myeloma - diagnosis ; Optimization ; Parameter optimization ; Performance indices ; Runge Kutta Optimizer ; Runge-Kutta method ; Slime ; Slime molds ; Slime mould learning operator ; Statistical analysis</subject><ispartof>Computers in biology and medicine, 2022-11, Vol.150, p.106189, Article 106189</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</citedby><cites>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2729957728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37859284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yazhou</creatorcontrib><creatorcontrib>Shi, Beibei</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
•The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Benchmarking</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diagnosis</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Kernel extreme learning machine</subject><subject>Kernels</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Malignancy</subject><subject>Multi characteristic indexes</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - diagnosis</subject><subject>Optimization</subject><subject>Parameter optimization</subject><subject>Performance indices</subject><subject>Runge Kutta Optimizer</subject><subject>Runge-Kutta method</subject><subject>Slime</subject><subject>Slime molds</subject><subject>Slime mould learning operator</subject><subject>Statistical analysis</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1rFTEQhoNY7LH6FyTgjTd7nGS_kstarIqFQtHrkM1O2hw2yZpki-2vdw_bIngjuQhknjczzEMIZbBnwLqPh72Jfh5c9DjuOXC-PndMyBdkx0QvK2jr5iXZATCoGsHbU_I65wMANFDDK3Ja96KVXDQ7ks8Dxfs4LcXFoNMD9drcuYB0Qp2CC7fUxkT9MhU3T0j9A07Ra7rkY-lmCbdIvy-laHo9F-fdIyZqU_Rbgpo7nbQpmFwuzlAXRvyN-Q05sXrK-PbpPiM_Lz__uPhaXV1_-XZxflWZBnipJDIpxNDaxrKxE6MZeD2iZhLWgw1npmmHlvfYcmmFMG0vre1GLQbLuIW6PiMftn_nFH8tmIvyLhucJh0wLllxIQCkbKBb0ff_oIe4pLBOp3jPpWz7nouVEhtlUsw5oVVzcn7dmmKgjmLUQf0Vo45i1CZmjb57arAMx9pz8NnECnzaAFw3cu8wqWwcBoOjS2iKGqP7f5c_9Xul6Q</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Ji, Yazhou</creator><creator>Shi, Beibei</creator><creator>Li, Yuanyuan</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202211</creationdate><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><author>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Benchmarking</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diagnosis</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Kernel extreme learning machine</topic><topic>Kernels</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Malignancy</topic><topic>Multi characteristic indexes</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - diagnosis</topic><topic>Optimization</topic><topic>Parameter optimization</topic><topic>Performance indices</topic><topic>Runge Kutta Optimizer</topic><topic>Runge-Kutta method</topic><topic>Slime</topic><topic>Slime molds</topic><topic>Slime mould learning operator</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yazhou</creatorcontrib><creatorcontrib>Shi, Beibei</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yazhou</au><au>Shi, Beibei</au><au>Li, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-11</date><risdate>2022</risdate><volume>150</volume><spage>106189</spage><pages>106189-</pages><artnum>106189</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
•The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37859284</pmid><doi>10.1016/j.compbiomed.2022.106189</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-11, Vol.150, p.106189, Article 106189 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2880099406 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Artificial neural networks Benchmarking Correlation coefficient Correlation coefficients Diagnosis Feature selection Humans Kernel extreme learning machine Kernels Learning algorithms Machine Learning Malignancy Multi characteristic indexes Multiple myeloma Multiple Myeloma - diagnosis Optimization Parameter optimization Performance indices Runge Kutta Optimizer Runge-Kutta method Slime Slime molds Slime mould learning operator Statistical analysis |
title | An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20machine%20learning%20for%20multiple%20myeloma%20using%20Runge%20Kutta%20Optimizer%20from%20multi%20characteristic%20indexes&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ji,%20Yazhou&rft.date=2022-11&rft.volume=150&rft.spage=106189&rft.pages=106189-&rft.artnum=106189&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.106189&rft_dat=%3Cproquest_cross%3E2880099406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729957728&rft_id=info:pmid/37859284&rft_els_id=S0010482522008976&rfr_iscdi=true |