An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes

Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2022-11, Vol.150, p.106189, Article 106189
Hauptverfasser: Ji, Yazhou, Shi, Beibei, Li, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106189
container_title Computers in biology and medicine
container_volume 150
creator Ji, Yazhou
Shi, Beibei
Li, Yuanyuan
description Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis. •The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.
doi_str_mv 10.1016/j.compbiomed.2022.106189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880099406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522008976</els_id><sourcerecordid>2880099406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhoNY7LH6FyTgjTd7nGS_kstarIqFQtHrkM1O2hw2yZpki-2vdw_bIngjuQhknjczzEMIZbBnwLqPh72Jfh5c9DjuOXC-PndMyBdkx0QvK2jr5iXZATCoGsHbU_I65wMANFDDK3Ja96KVXDQ7ks8Dxfs4LcXFoNMD9drcuYB0Qp2CC7fUxkT9MhU3T0j9A07Ra7rkY-lmCbdIvy-laHo9F-fdIyZqU_Rbgpo7nbQpmFwuzlAXRvyN-Q05sXrK-PbpPiM_Lz__uPhaXV1_-XZxflWZBnipJDIpxNDaxrKxE6MZeD2iZhLWgw1npmmHlvfYcmmFMG0vre1GLQbLuIW6PiMftn_nFH8tmIvyLhucJh0wLllxIQCkbKBb0ff_oIe4pLBOp3jPpWz7nouVEhtlUsw5oVVzcn7dmmKgjmLUQf0Vo45i1CZmjb57arAMx9pz8NnECnzaAFw3cu8wqWwcBoOjS2iKGqP7f5c_9Xul6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729957728</pqid></control><display><type>article</type><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</creator><creatorcontrib>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</creatorcontrib><description>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis. •The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.106189</identifier><identifier>PMID: 37859284</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Benchmarking ; Correlation coefficient ; Correlation coefficients ; Diagnosis ; Feature selection ; Humans ; Kernel extreme learning machine ; Kernels ; Learning algorithms ; Machine Learning ; Malignancy ; Multi characteristic indexes ; Multiple myeloma ; Multiple Myeloma - diagnosis ; Optimization ; Parameter optimization ; Performance indices ; Runge Kutta Optimizer ; Runge-Kutta method ; Slime ; Slime molds ; Slime mould learning operator ; Statistical analysis</subject><ispartof>Computers in biology and medicine, 2022-11, Vol.150, p.106189, Article 106189</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</citedby><cites>FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2729957728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37859284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Yazhou</creatorcontrib><creatorcontrib>Shi, Beibei</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis. •The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Benchmarking</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diagnosis</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Kernel extreme learning machine</subject><subject>Kernels</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Malignancy</subject><subject>Multi characteristic indexes</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - diagnosis</subject><subject>Optimization</subject><subject>Parameter optimization</subject><subject>Performance indices</subject><subject>Runge Kutta Optimizer</subject><subject>Runge-Kutta method</subject><subject>Slime</subject><subject>Slime molds</subject><subject>Slime mould learning operator</subject><subject>Statistical analysis</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1rFTEQhoNY7LH6FyTgjTd7nGS_kstarIqFQtHrkM1O2hw2yZpki-2vdw_bIngjuQhknjczzEMIZbBnwLqPh72Jfh5c9DjuOXC-PndMyBdkx0QvK2jr5iXZATCoGsHbU_I65wMANFDDK3Ja96KVXDQ7ks8Dxfs4LcXFoNMD9drcuYB0Qp2CC7fUxkT9MhU3T0j9A07Ra7rkY-lmCbdIvy-laHo9F-fdIyZqU_Rbgpo7nbQpmFwuzlAXRvyN-Q05sXrK-PbpPiM_Lz__uPhaXV1_-XZxflWZBnipJDIpxNDaxrKxE6MZeD2iZhLWgw1npmmHlvfYcmmFMG0vre1GLQbLuIW6PiMftn_nFH8tmIvyLhucJh0wLllxIQCkbKBb0ff_oIe4pLBOp3jPpWz7nouVEhtlUsw5oVVzcn7dmmKgjmLUQf0Vo45i1CZmjb57arAMx9pz8NnECnzaAFw3cu8wqWwcBoOjS2iKGqP7f5c_9Xul6Q</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Ji, Yazhou</creator><creator>Shi, Beibei</creator><creator>Li, Yuanyuan</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202211</creationdate><title>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</title><author>Ji, Yazhou ; Shi, Beibei ; Li, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9e1988b5f4f1d68dcb23dea190909e421c45b527e529f88c579ff6da8bf12f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Benchmarking</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diagnosis</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Kernel extreme learning machine</topic><topic>Kernels</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Malignancy</topic><topic>Multi characteristic indexes</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - diagnosis</topic><topic>Optimization</topic><topic>Parameter optimization</topic><topic>Performance indices</topic><topic>Runge Kutta Optimizer</topic><topic>Runge-Kutta method</topic><topic>Slime</topic><topic>Slime molds</topic><topic>Slime mould learning operator</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yazhou</creatorcontrib><creatorcontrib>Shi, Beibei</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yazhou</au><au>Shi, Beibei</au><au>Li, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-11</date><risdate>2022</risdate><volume>150</volume><spage>106189</spage><pages>106189-</pages><artnum>106189</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis. •The MSRUN is presented.•Performance of the MSRUN is enhanced by slime mould learning operator.•MSRUN’s performance is validated using benchmarks.•MSRUN-KELM is proposed with MSRUN.•MSRUN-KELM may be treated as tool for assist MM diagnosis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37859284</pmid><doi>10.1016/j.compbiomed.2022.106189</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-11, Vol.150, p.106189, Article 106189
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2880099406
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Artificial neural networks
Benchmarking
Correlation coefficient
Correlation coefficients
Diagnosis
Feature selection
Humans
Kernel extreme learning machine
Kernels
Learning algorithms
Machine Learning
Malignancy
Multi characteristic indexes
Multiple myeloma
Multiple Myeloma - diagnosis
Optimization
Parameter optimization
Performance indices
Runge Kutta Optimizer
Runge-Kutta method
Slime
Slime molds
Slime mould learning operator
Statistical analysis
title An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20machine%20learning%20for%20multiple%20myeloma%20using%20Runge%20Kutta%20Optimizer%20from%20multi%20characteristic%20indexes&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ji,%20Yazhou&rft.date=2022-11&rft.volume=150&rft.spage=106189&rft.pages=106189-&rft.artnum=106189&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.106189&rft_dat=%3Cproquest_cross%3E2880099406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729957728&rft_id=info:pmid/37859284&rft_els_id=S0010482522008976&rfr_iscdi=true