Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution
Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly com...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2023-06, Vol.94 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 94 |
creator | Zhou, Kuai Huang, Xiang Li, Shuanggao Li, Gen |
description | Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures. |
doi_str_mv | 10.1063/5.0150299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880098829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828015127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</originalsourceid><addsrcrecordid>eNp90E1LwzAYwPEgCs7pwW8Q8KJCZ16aNDnK8GUw8KLnkqbp1tE2NU8j7NubOU8ezCWXXx7y_BG6pmRBieQPYkGoIEzrEzSjROmskIyfohkhPM9kkatzdAGwI-kISmeoXvVj8F_tsMGjB4cdTG1vptYP2Fgbg7F73PiAOxM2Dm995zBsTTNhmEK0UwwOGwDXV90eVwZcjdNLiKMLWXDgu3gYdYnOGtOBu_q95-jj-el9-Zqt315Wy8d1ZrkkU2ZrbUwutRJNkVecSS2NrIWqqCpyXjVN7SopuJRE5jZRXbDcaS1oTWqrieFzdHucm1b6jGmVsm_Buq4zg_MRSqYUIVopphO9-UN3PoYh_S4pplJEyoqk7o7KBg8QXFOOIeUJ-5KS8tC7FOVv72TvjxZsO_0U_Ad_A270gDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828015127</pqid></control><display><type>article</type><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</creator><creatorcontrib>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</creatorcontrib><description>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0150299</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Assembly ; Deep learning ; Image enhancement ; Image resolution ; Pose estimation ; Scientific apparatus & instruments</subject><ispartof>Review of scientific instruments, 2023-06, Vol.94 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</citedby><cites>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</cites><orcidid>0000-0002-1924-991X ; 0000-0002-0147-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0150299$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Zhou, Kuai</creatorcontrib><creatorcontrib>Huang, Xiang</creatorcontrib><creatorcontrib>Li, Shuanggao</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><title>Review of scientific instruments</title><description>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</description><subject>Assembly</subject><subject>Deep learning</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Pose estimation</subject><subject>Scientific apparatus & instruments</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYwPEgCs7pwW8Q8KJCZ16aNDnK8GUw8KLnkqbp1tE2NU8j7NubOU8ezCWXXx7y_BG6pmRBieQPYkGoIEzrEzSjROmskIyfohkhPM9kkatzdAGwI-kISmeoXvVj8F_tsMGjB4cdTG1vptYP2Fgbg7F73PiAOxM2Dm995zBsTTNhmEK0UwwOGwDXV90eVwZcjdNLiKMLWXDgu3gYdYnOGtOBu_q95-jj-el9-Zqt315Wy8d1ZrkkU2ZrbUwutRJNkVecSS2NrIWqqCpyXjVN7SopuJRE5jZRXbDcaS1oTWqrieFzdHucm1b6jGmVsm_Buq4zg_MRSqYUIVopphO9-UN3PoYh_S4pplJEyoqk7o7KBg8QXFOOIeUJ-5KS8tC7FOVv72TvjxZsO_0U_Ad_A270gDw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhou, Kuai</creator><creator>Huang, Xiang</creator><creator>Li, Shuanggao</creator><creator>Li, Gen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1924-991X</orcidid><orcidid>https://orcid.org/0000-0002-0147-9944</orcidid></search><sort><creationdate>20230601</creationdate><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><author>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assembly</topic><topic>Deep learning</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Pose estimation</topic><topic>Scientific apparatus & instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kuai</creatorcontrib><creatorcontrib>Huang, Xiang</creatorcontrib><creatorcontrib>Li, Shuanggao</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kuai</au><au>Huang, Xiang</au><au>Li, Shuanggao</au><au>Li, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</atitle><jtitle>Review of scientific instruments</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>94</volume><issue>6</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150299</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1924-991X</orcidid><orcidid>https://orcid.org/0000-0002-0147-9944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2023-06, Vol.94 (6) |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_miscellaneous_2880098829 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Assembly Deep learning Image enhancement Image resolution Pose estimation Scientific apparatus & instruments |
title | Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20pose%20estimation%20accuracy%20for%20large%20hole%20shaft%20structure%20assembly%20based%20on%20super-resolution&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhou,%20Kuai&rft.date=2023-06-01&rft.volume=94&rft.issue=6&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0150299&rft_dat=%3Cproquest_cross%3E2828015127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828015127&rft_id=info:pmid/&rfr_iscdi=true |