Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution

Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2023-06, Vol.94 (6)
Hauptverfasser: Zhou, Kuai, Huang, Xiang, Li, Shuanggao, Li, Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Review of scientific instruments
container_volume 94
creator Zhou, Kuai
Huang, Xiang
Li, Shuanggao
Li, Gen
description Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.
doi_str_mv 10.1063/5.0150299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2880098829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828015127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</originalsourceid><addsrcrecordid>eNp90E1LwzAYwPEgCs7pwW8Q8KJCZ16aNDnK8GUw8KLnkqbp1tE2NU8j7NubOU8ezCWXXx7y_BG6pmRBieQPYkGoIEzrEzSjROmskIyfohkhPM9kkatzdAGwI-kISmeoXvVj8F_tsMGjB4cdTG1vptYP2Fgbg7F73PiAOxM2Dm995zBsTTNhmEK0UwwOGwDXV90eVwZcjdNLiKMLWXDgu3gYdYnOGtOBu_q95-jj-el9-Zqt315Wy8d1ZrkkU2ZrbUwutRJNkVecSS2NrIWqqCpyXjVN7SopuJRE5jZRXbDcaS1oTWqrieFzdHucm1b6jGmVsm_Buq4zg_MRSqYUIVopphO9-UN3PoYh_S4pplJEyoqk7o7KBg8QXFOOIeUJ-5KS8tC7FOVv72TvjxZsO_0U_Ad_A270gDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828015127</pqid></control><display><type>article</type><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</creator><creatorcontrib>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</creatorcontrib><description>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0150299</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Assembly ; Deep learning ; Image enhancement ; Image resolution ; Pose estimation ; Scientific apparatus &amp; instruments</subject><ispartof>Review of scientific instruments, 2023-06, Vol.94 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</citedby><cites>FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</cites><orcidid>0000-0002-1924-991X ; 0000-0002-0147-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0150299$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Zhou, Kuai</creatorcontrib><creatorcontrib>Huang, Xiang</creatorcontrib><creatorcontrib>Li, Shuanggao</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><title>Review of scientific instruments</title><description>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</description><subject>Assembly</subject><subject>Deep learning</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Pose estimation</subject><subject>Scientific apparatus &amp; instruments</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYwPEgCs7pwW8Q8KJCZ16aNDnK8GUw8KLnkqbp1tE2NU8j7NubOU8ezCWXXx7y_BG6pmRBieQPYkGoIEzrEzSjROmskIyfohkhPM9kkatzdAGwI-kISmeoXvVj8F_tsMGjB4cdTG1vptYP2Fgbg7F73PiAOxM2Dm995zBsTTNhmEK0UwwOGwDXV90eVwZcjdNLiKMLWXDgu3gYdYnOGtOBu_q95-jj-el9-Zqt315Wy8d1ZrkkU2ZrbUwutRJNkVecSS2NrIWqqCpyXjVN7SopuJRE5jZRXbDcaS1oTWqrieFzdHucm1b6jGmVsm_Buq4zg_MRSqYUIVopphO9-UN3PoYh_S4pplJEyoqk7o7KBg8QXFOOIeUJ-5KS8tC7FOVv72TvjxZsO_0U_Ad_A270gDw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhou, Kuai</creator><creator>Huang, Xiang</creator><creator>Li, Shuanggao</creator><creator>Li, Gen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1924-991X</orcidid><orcidid>https://orcid.org/0000-0002-0147-9944</orcidid></search><sort><creationdate>20230601</creationdate><title>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</title><author>Zhou, Kuai ; Huang, Xiang ; Li, Shuanggao ; Li, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-cd9aa46985f74b32696a6d58b18743bffdeb65366064c9aa9724e9951d0dc90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assembly</topic><topic>Deep learning</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Pose estimation</topic><topic>Scientific apparatus &amp; instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kuai</creatorcontrib><creatorcontrib>Huang, Xiang</creatorcontrib><creatorcontrib>Li, Shuanggao</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kuai</au><au>Huang, Xiang</au><au>Li, Shuanggao</au><au>Li, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution</atitle><jtitle>Review of scientific instruments</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>94</volume><issue>6</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Image resolution is crucial to visual measurement accuracy, but on the one hand, the cost of increasing the resolution of the acquisition device is prohibitive, and on the other hand, the resolution of the image inevitably decreases when photographing objects at a distance, which is particularly common in the assembly of large hole shaft structures for pose measurement. In this study, a deep learning-based method for super-resolution of large hole shaft images is proposed, including a super-resolution dataset for hole shaft images and a new deep learning super-resolution network structure, which is designed to enhance the perception of edge information in images through the core structure and improve efficiency while improving the effect of image super-resolution. A series of experiments have proven that the method is highly accurate and efficient and can be applied to the automatic assembly of large hole shaft structures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150299</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1924-991X</orcidid><orcidid>https://orcid.org/0000-0002-0147-9944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2023-06, Vol.94 (6)
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_2880098829
source AIP Journals Complete; Alma/SFX Local Collection
subjects Assembly
Deep learning
Image enhancement
Image resolution
Pose estimation
Scientific apparatus & instruments
title Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20pose%20estimation%20accuracy%20for%20large%20hole%20shaft%20structure%20assembly%20based%20on%20super-resolution&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhou,%20Kuai&rft.date=2023-06-01&rft.volume=94&rft.issue=6&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0150299&rft_dat=%3Cproquest_cross%3E2828015127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828015127&rft_id=info:pmid/&rfr_iscdi=true