Magnetic AC loss in twisted-filament Bi-2223 tapes
In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 1999-06, Vol.9 (2), p.821-824 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 2 |
container_start_page | 821 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 9 |
creator | Oomen, M.P. Rieger, J. Leghissa, M. Fischer, B. ten Haken, B. Arndt, T. |
description | In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape. |
doi_str_mv | 10.1109/77.783423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28795290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>783423</ieee_id><sourcerecordid>919911392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKsHr572IIqH1Ew-TOZYi19Q8aLnJZtNJLLd1s0W8d-bskVv6iUJk-d9GGYIOQY2AWB4qfVEGyG52CEjUMpQrkDt5jdTQA3nYp8cpPTGGEgj1YjwR_va-j66YjormmVKRWyL_iOm3tc0xMYufNsX15HynC16u_LpkOwF2yR_tL3H5OX25nl2T-dPdw-z6Zw6yVhPUQRT6VoirxiwijmXDRVyoWQNPLcjNOgql7g24GtQPOTDyoCVrxk6MSbng3fVLd_XPvXlIibnm8a2frlOJQIigMjGMTn7leRGo-LI_gEKo5mSf4NXiFyhyeDFALouD6_zoVx1cWG7zxJYudlIqXU5bCSzp1upTc42obOti-kngMKA3GAnAxa999-_W8cXkauOFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26992598</pqid></control><display><type>article</type><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><source>IEEE Electronic Library (IEL)</source><creator>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</creator><creatorcontrib>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</creatorcontrib><description>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.783423</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Barriers ; CERAMICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conducting materials ; Conductors ; Disturbances. Regulation. Protection ; Electric connection. Cables. Wiring ; ELECTRICAL CONDUCTIVITY ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy dissipation ; Exact sciences and technology ; Filaments ; Magnetic anisotropy ; Magnetic flux ; Magnetic losses ; Magnetic materials ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; Perpendicular magnetic anisotropy ; Physics ; Power networks and lines ; SILVER ALLOYS (50 TO 99 AG) ; Silver base alloys ; Superconducting magnets ; Superconducting materials (excluding high-tc compounds) ; Superconducting tapes ; Superconductivity ; SUPERCONDUCTORS ; TAPE ; Various equipment and components ; WIRE</subject><ispartof>IEEE transactions on applied superconductivity, 1999-06, Vol.9 (2), p.821-824</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</citedby><cites>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/783423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/783423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1938143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oomen, M.P.</creatorcontrib><creatorcontrib>Rieger, J.</creatorcontrib><creatorcontrib>Leghissa, M.</creatorcontrib><creatorcontrib>Fischer, B.</creatorcontrib><creatorcontrib>ten Haken, B.</creatorcontrib><creatorcontrib>Arndt, T.</creatorcontrib><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</description><subject>Applied sciences</subject><subject>Barriers</subject><subject>CERAMICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conducting materials</subject><subject>Conductors</subject><subject>Disturbances. Regulation. Protection</subject><subject>Electric connection. Cables. Wiring</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy dissipation</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Magnetic anisotropy</subject><subject>Magnetic flux</subject><subject>Magnetic losses</subject><subject>Magnetic materials</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Power networks and lines</subject><subject>SILVER ALLOYS (50 TO 99 AG)</subject><subject>Silver base alloys</subject><subject>Superconducting magnets</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>Superconducting tapes</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>TAPE</subject><subject>Various equipment and components</subject><subject>WIRE</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhoMoWKsHr572IIqH1Ew-TOZYi19Q8aLnJZtNJLLd1s0W8d-bskVv6iUJk-d9GGYIOQY2AWB4qfVEGyG52CEjUMpQrkDt5jdTQA3nYp8cpPTGGEgj1YjwR_va-j66YjormmVKRWyL_iOm3tc0xMYufNsX15HynC16u_LpkOwF2yR_tL3H5OX25nl2T-dPdw-z6Zw6yVhPUQRT6VoirxiwijmXDRVyoWQNPLcjNOgql7g24GtQPOTDyoCVrxk6MSbng3fVLd_XPvXlIibnm8a2frlOJQIigMjGMTn7leRGo-LI_gEKo5mSf4NXiFyhyeDFALouD6_zoVx1cWG7zxJYudlIqXU5bCSzp1upTc42obOti-kngMKA3GAnAxa999-_W8cXkauOFw</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Oomen, M.P.</creator><creator>Rieger, J.</creator><creator>Leghissa, M.</creator><creator>Fischer, B.</creator><creator>ten Haken, B.</creator><creator>Arndt, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>19990601</creationdate><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><author>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Barriers</topic><topic>CERAMICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conducting materials</topic><topic>Conductors</topic><topic>Disturbances. Regulation. Protection</topic><topic>Electric connection. Cables. Wiring</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy dissipation</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Magnetic anisotropy</topic><topic>Magnetic flux</topic><topic>Magnetic losses</topic><topic>Magnetic materials</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Power networks and lines</topic><topic>SILVER ALLOYS (50 TO 99 AG)</topic><topic>Silver base alloys</topic><topic>Superconducting magnets</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>Superconducting tapes</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>TAPE</topic><topic>Various equipment and components</topic><topic>WIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oomen, M.P.</creatorcontrib><creatorcontrib>Rieger, J.</creatorcontrib><creatorcontrib>Leghissa, M.</creatorcontrib><creatorcontrib>Fischer, B.</creatorcontrib><creatorcontrib>ten Haken, B.</creatorcontrib><creatorcontrib>Arndt, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oomen, M.P.</au><au>Rieger, J.</au><au>Leghissa, M.</au><au>Fischer, B.</au><au>ten Haken, B.</au><au>Arndt, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic AC loss in twisted-filament Bi-2223 tapes</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1999-06-01</date><risdate>1999</risdate><volume>9</volume><issue>2</issue><spage>821</spage><epage>824</epage><pages>821-824</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.783423</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 1999-06, Vol.9 (2), p.821-824 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_28795290 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Barriers CERAMICS Condensed matter: electronic structure, electrical, magnetic, and optical properties Conducting materials Conductors Disturbances. Regulation. Protection Electric connection. Cables. Wiring ELECTRICAL CONDUCTIVITY Electrical engineering. Electrical power engineering Electrical power engineering Energy dissipation Exact sciences and technology Filaments Magnetic anisotropy Magnetic flux Magnetic losses Magnetic materials Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) Perpendicular magnetic anisotropy Physics Power networks and lines SILVER ALLOYS (50 TO 99 AG) Silver base alloys Superconducting magnets Superconducting materials (excluding high-tc compounds) Superconducting tapes Superconductivity SUPERCONDUCTORS TAPE Various equipment and components WIRE |
title | Magnetic AC loss in twisted-filament Bi-2223 tapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20AC%20loss%20in%20twisted-filament%20Bi-2223%20tapes&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Oomen,%20M.P.&rft.date=1999-06-01&rft.volume=9&rft.issue=2&rft.spage=821&rft.epage=824&rft.pages=821-824&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.783423&rft_dat=%3Cproquest_RIE%3E919911392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26992598&rft_id=info:pmid/&rft_ieee_id=783423&rfr_iscdi=true |