Magnetic AC loss in twisted-filament Bi-2223 tapes

In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 1999-06, Vol.9 (2), p.821-824
Hauptverfasser: Oomen, M.P., Rieger, J., Leghissa, M., Fischer, B., ten Haken, B., Arndt, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 2
container_start_page 821
container_title IEEE transactions on applied superconductivity
container_volume 9
creator Oomen, M.P.
Rieger, J.
Leghissa, M.
Fischer, B.
ten Haken, B.
Arndt, T.
description In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.
doi_str_mv 10.1109/77.783423
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28795290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>783423</ieee_id><sourcerecordid>919911392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKsHr572IIqH1Ew-TOZYi19Q8aLnJZtNJLLd1s0W8d-bskVv6iUJk-d9GGYIOQY2AWB4qfVEGyG52CEjUMpQrkDt5jdTQA3nYp8cpPTGGEgj1YjwR_va-j66YjormmVKRWyL_iOm3tc0xMYufNsX15HynC16u_LpkOwF2yR_tL3H5OX25nl2T-dPdw-z6Zw6yVhPUQRT6VoirxiwijmXDRVyoWQNPLcjNOgql7g24GtQPOTDyoCVrxk6MSbng3fVLd_XPvXlIibnm8a2frlOJQIigMjGMTn7leRGo-LI_gEKo5mSf4NXiFyhyeDFALouD6_zoVx1cWG7zxJYudlIqXU5bCSzp1upTc42obOti-kngMKA3GAnAxa999-_W8cXkauOFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26992598</pqid></control><display><type>article</type><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><source>IEEE Electronic Library (IEL)</source><creator>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</creator><creatorcontrib>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</creatorcontrib><description>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.783423</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Barriers ; CERAMICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conducting materials ; Conductors ; Disturbances. Regulation. Protection ; Electric connection. Cables. Wiring ; ELECTRICAL CONDUCTIVITY ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy dissipation ; Exact sciences and technology ; Filaments ; Magnetic anisotropy ; Magnetic flux ; Magnetic losses ; Magnetic materials ; Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.) ; Perpendicular magnetic anisotropy ; Physics ; Power networks and lines ; SILVER ALLOYS (50 TO 99 AG) ; Silver base alloys ; Superconducting magnets ; Superconducting materials (excluding high-tc compounds) ; Superconducting tapes ; Superconductivity ; SUPERCONDUCTORS ; TAPE ; Various equipment and components ; WIRE</subject><ispartof>IEEE transactions on applied superconductivity, 1999-06, Vol.9 (2), p.821-824</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</citedby><cites>FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/783423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/783423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1938143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oomen, M.P.</creatorcontrib><creatorcontrib>Rieger, J.</creatorcontrib><creatorcontrib>Leghissa, M.</creatorcontrib><creatorcontrib>Fischer, B.</creatorcontrib><creatorcontrib>ten Haken, B.</creatorcontrib><creatorcontrib>Arndt, T.</creatorcontrib><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</description><subject>Applied sciences</subject><subject>Barriers</subject><subject>CERAMICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conducting materials</subject><subject>Conductors</subject><subject>Disturbances. Regulation. Protection</subject><subject>Electric connection. Cables. Wiring</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy dissipation</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Magnetic anisotropy</subject><subject>Magnetic flux</subject><subject>Magnetic losses</subject><subject>Magnetic materials</subject><subject>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Power networks and lines</subject><subject>SILVER ALLOYS (50 TO 99 AG)</subject><subject>Silver base alloys</subject><subject>Superconducting magnets</subject><subject>Superconducting materials (excluding high-tc compounds)</subject><subject>Superconducting tapes</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>TAPE</subject><subject>Various equipment and components</subject><subject>WIRE</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhoMoWKsHr572IIqH1Ew-TOZYi19Q8aLnJZtNJLLd1s0W8d-bskVv6iUJk-d9GGYIOQY2AWB4qfVEGyG52CEjUMpQrkDt5jdTQA3nYp8cpPTGGEgj1YjwR_va-j66YjormmVKRWyL_iOm3tc0xMYufNsX15HynC16u_LpkOwF2yR_tL3H5OX25nl2T-dPdw-z6Zw6yVhPUQRT6VoirxiwijmXDRVyoWQNPLcjNOgql7g24GtQPOTDyoCVrxk6MSbng3fVLd_XPvXlIibnm8a2frlOJQIigMjGMTn7leRGo-LI_gEKo5mSf4NXiFyhyeDFALouD6_zoVx1cWG7zxJYudlIqXU5bCSzp1upTc42obOti-kngMKA3GAnAxa999-_W8cXkauOFw</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Oomen, M.P.</creator><creator>Rieger, J.</creator><creator>Leghissa, M.</creator><creator>Fischer, B.</creator><creator>ten Haken, B.</creator><creator>Arndt, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>19990601</creationdate><title>Magnetic AC loss in twisted-filament Bi-2223 tapes</title><author>Oomen, M.P. ; Rieger, J. ; Leghissa, M. ; Fischer, B. ; ten Haken, B. ; Arndt, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-93f8b7d492b010b0cc223b92354d120513717b23b2781ed152fd15a4f9bed09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Barriers</topic><topic>CERAMICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conducting materials</topic><topic>Conductors</topic><topic>Disturbances. Regulation. Protection</topic><topic>Electric connection. Cables. Wiring</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy dissipation</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Magnetic anisotropy</topic><topic>Magnetic flux</topic><topic>Magnetic losses</topic><topic>Magnetic materials</topic><topic>Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Power networks and lines</topic><topic>SILVER ALLOYS (50 TO 99 AG)</topic><topic>Silver base alloys</topic><topic>Superconducting magnets</topic><topic>Superconducting materials (excluding high-tc compounds)</topic><topic>Superconducting tapes</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>TAPE</topic><topic>Various equipment and components</topic><topic>WIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oomen, M.P.</creatorcontrib><creatorcontrib>Rieger, J.</creatorcontrib><creatorcontrib>Leghissa, M.</creatorcontrib><creatorcontrib>Fischer, B.</creatorcontrib><creatorcontrib>ten Haken, B.</creatorcontrib><creatorcontrib>Arndt, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oomen, M.P.</au><au>Rieger, J.</au><au>Leghissa, M.</au><au>Fischer, B.</au><au>ten Haken, B.</au><au>Arndt, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic AC loss in twisted-filament Bi-2223 tapes</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1999-06-01</date><risdate>1999</risdate><volume>9</volume><issue>2</issue><spage>821</spage><epage>824</epage><pages>821-824</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In AC power-engineering applications, the energy dissipation in the superconductor is dominated by the magnetization due to alternating fields. To reduce this type of loss, conductors are being developed with twisted filaments and an increased matrix resistivity. The magnetic AC loss has been well described for low-T/sub c/ (wire) conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity, flux creep and large aspect ratio of the tape. The magnetic AC loss is investigated at power frequencies in various Bi-2223 tapes (twisted and nontwisted) and with different materials for the matrix (Ag, Ag alloys and ceramic barriers). When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is silver. In tapes with ceramic barriers between the filaments, first indications of filament decoupling are observed also in perpendicular field. Compared to a round wire, there are essential differences between the AC loss mechanisms occurring in a long twisted tape and those in a short piece of nontwisted tape.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.783423</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 1999-06, Vol.9 (2), p.821-824
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_28795290
source IEEE Electronic Library (IEL)
subjects Applied sciences
Barriers
CERAMICS
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conducting materials
Conductors
Disturbances. Regulation. Protection
Electric connection. Cables. Wiring
ELECTRICAL CONDUCTIVITY
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy dissipation
Exact sciences and technology
Filaments
Magnetic anisotropy
Magnetic flux
Magnetic losses
Magnetic materials
Metals, alloys and compounds (a15, 001c15, laves phases, chevrel phases, borocarbides, etc.)
Perpendicular magnetic anisotropy
Physics
Power networks and lines
SILVER ALLOYS (50 TO 99 AG)
Silver base alloys
Superconducting magnets
Superconducting materials (excluding high-tc compounds)
Superconducting tapes
Superconductivity
SUPERCONDUCTORS
TAPE
Various equipment and components
WIRE
title Magnetic AC loss in twisted-filament Bi-2223 tapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20AC%20loss%20in%20twisted-filament%20Bi-2223%20tapes&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Oomen,%20M.P.&rft.date=1999-06-01&rft.volume=9&rft.issue=2&rft.spage=821&rft.epage=824&rft.pages=821-824&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.783423&rft_dat=%3Cproquest_RIE%3E919911392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26992598&rft_id=info:pmid/&rft_ieee_id=783423&rfr_iscdi=true