Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation

Background Breath‐holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning‐based reconstruction (DLR) of undersampled k‐space promises to shorten BHs while preserving image quality and accuracy of ventricular ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2024-08, Vol.60 (2), p.640-650
Hauptverfasser: Pednekar, Amol, Kocaoglu, Murat, Wang, Hui, Tanimoto, Aki, Tkach, Jean A., Lang, Sean, Taylor, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 2
container_start_page 640
container_title Journal of magnetic resonance imaging
container_volume 60
creator Pednekar, Amol
Kocaoglu, Murat
Wang, Hui
Tanimoto, Aki
Tkach, Jean A.
Lang, Sean
Taylor, Michael D.
description Background Breath‐holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning‐based reconstruction (DLR) of undersampled k‐space promises to shorten BHs while preserving image quality and accuracy of ventricular assessment. Purpose To perform a systematic evaluation of DLR of cine bSSFP images from undersampled k‐space over a range of acceleration factors. Study Type Retrospective. Subjects Fifteen pectus excavatum patients (mean age 16.8 ± 5.4 years, 20% female) with normal cardiac anatomy and function and 12‐second BH capability. Field Strength/Sequence 1.5‐T, cine bSSFP. Assessment Retrospective DLR was conducted by applying compressed sensitivity encoding (C‐SENSE) acceleration to systematically undersample fully sampled k‐space cine bSSFP acquisition data over an acceleration/undersampling factor (R) considering a range of 2 to 8. Quality imperceptibility (QI) measures, including structural similarity index measure, were calculated using images reconstructed from fully sampled k‐space as a reference. Image quality, including contrast and edge definition, was evaluated for diagnostic adequacy by three readers with varying levels of experience in cardiac MRI (>4 years, >18 years, and 1 year). Automated DL‐based biventricular segmentation was performed commercially available software by cardiac radiologists with more than 4 years of experience. Statistical Tests Tukey box plots, linear mixed effects model, analysis of variance (ANOVA), weighted kappa, Kruskal–Wallis test, and Wilcoxon signed‐rank test were employed as appropriate. A P‐value
doi_str_mv 10.1002/jmri.29081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2879406582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879406582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-2463749acca26fc593f86cc3fcb77b4917ae99b01aa99e8f5afc1c1e52cc5dd33</originalsourceid><addsrcrecordid>eNp9kM9uFDEMhyNERUvhwgOgSFwQ0pQkM5kk3Jal0KJFSIWeg9fjQVnNnyWZAe2NR-gz8iRku4UDB0625U8_2R9jT6Q4k0Kol5s-hjPlhJX32InUShVK2_p-7oUuC2mFOWYPU9oIIZyr9AN2XBqrtdLmhH1ZIFJHESZq-DIMxJcQmwDIP1xd8usUhq_8DdGWrwjikKdfP29eQ8rwFeE4pCnOOIVxeMUX_NMuTdTDFJCff4duhv3iETtqoUv0-K6esuu355-XF8Xq47vL5WJVYKWdLFRVl6ZygAiqblG7srU1Ytni2ph15aQBcm4tJIBzZFsNLUqUpBWibpqyPGXPD7nbOH6bKU2-Dym_1sFA45y8ssZVotZWZfTZP-hmnOOQr_OlMNaaSro6Uy8OFMYxpUit38bQQ9x5Kfzeu99797feM_z0LnJe99T8Rf-IzoA8AD9CR7v_RPn3Wfwh9DfT4442</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078874196</pqid></control><display><type>article</type><title>Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Pednekar, Amol ; Kocaoglu, Murat ; Wang, Hui ; Tanimoto, Aki ; Tkach, Jean A. ; Lang, Sean ; Taylor, Michael D.</creator><creatorcontrib>Pednekar, Amol ; Kocaoglu, Murat ; Wang, Hui ; Tanimoto, Aki ; Tkach, Jean A. ; Lang, Sean ; Taylor, Michael D.</creatorcontrib><description>Background Breath‐holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning‐based reconstruction (DLR) of undersampled k‐space promises to shorten BHs while preserving image quality and accuracy of ventricular assessment. Purpose To perform a systematic evaluation of DLR of cine bSSFP images from undersampled k‐space over a range of acceleration factors. Study Type Retrospective. Subjects Fifteen pectus excavatum patients (mean age 16.8 ± 5.4 years, 20% female) with normal cardiac anatomy and function and 12‐second BH capability. Field Strength/Sequence 1.5‐T, cine bSSFP. Assessment Retrospective DLR was conducted by applying compressed sensitivity encoding (C‐SENSE) acceleration to systematically undersample fully sampled k‐space cine bSSFP acquisition data over an acceleration/undersampling factor (R) considering a range of 2 to 8. Quality imperceptibility (QI) measures, including structural similarity index measure, were calculated using images reconstructed from fully sampled k‐space as a reference. Image quality, including contrast and edge definition, was evaluated for diagnostic adequacy by three readers with varying levels of experience in cardiac MRI (&gt;4 years, &gt;18 years, and 1 year). Automated DL‐based biventricular segmentation was performed commercially available software by cardiac radiologists with more than 4 years of experience. Statistical Tests Tukey box plots, linear mixed effects model, analysis of variance (ANOVA), weighted kappa, Kruskal–Wallis test, and Wilcoxon signed‐rank test were employed as appropriate. A P‐value &lt;0.05 was considered statistically significant. Results There was a significant decrease in the QI values and edge definition scores as R increased. Diagnostically adequate image quality was observed up to R = 5. The effect of R on all biventricular volumetric indices was non‐significant (P = 0.447). Data Conclusion The biventricular volumetric indices obtained from the reconstruction of fully sampled cine bSSFP acquisitions and DLR of the same k‐space data undersampled by C‐SENSE up to R = 5 may be comparable. Evidence Level 3 Technical Efficacy Stage 1</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29081</identifier><identifier>PMID: 37855257</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>adaptive intelligence ; Adolescent ; Adult ; biventricular volume ; Breath Holding ; cardiac MRI ; Child ; cine imaging ; compressed SENSE ; Data acquisition ; Deep Learning ; Evaluation ; Female ; Field strength ; Heart ; Heart - diagnostic imaging ; Humans ; Image acquisition ; Image contrast ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Magnetic resonance imaging ; Magnetic Resonance Imaging, Cine - methods ; Male ; Medical imaging ; Rank tests ; Reproducibility of Results ; Retrospective Studies ; Statistical analysis ; Statistical models ; Statistical tests ; Variance analysis ; Young Adult</subject><ispartof>Journal of magnetic resonance imaging, 2024-08, Vol.60 (2), p.640-650</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-2463749acca26fc593f86cc3fcb77b4917ae99b01aa99e8f5afc1c1e52cc5dd33</citedby><cites>FETCH-LOGICAL-c4591-2463749acca26fc593f86cc3fcb77b4917ae99b01aa99e8f5afc1c1e52cc5dd33</cites><orcidid>0000-0002-4804-8789 ; 0000-0002-5686-3417 ; 0000-0003-4593-7481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.29081$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.29081$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37855257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pednekar, Amol</creatorcontrib><creatorcontrib>Kocaoglu, Murat</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Tanimoto, Aki</creatorcontrib><creatorcontrib>Tkach, Jean A.</creatorcontrib><creatorcontrib>Lang, Sean</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><title>Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Breath‐holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning‐based reconstruction (DLR) of undersampled k‐space promises to shorten BHs while preserving image quality and accuracy of ventricular assessment. Purpose To perform a systematic evaluation of DLR of cine bSSFP images from undersampled k‐space over a range of acceleration factors. Study Type Retrospective. Subjects Fifteen pectus excavatum patients (mean age 16.8 ± 5.4 years, 20% female) with normal cardiac anatomy and function and 12‐second BH capability. Field Strength/Sequence 1.5‐T, cine bSSFP. Assessment Retrospective DLR was conducted by applying compressed sensitivity encoding (C‐SENSE) acceleration to systematically undersample fully sampled k‐space cine bSSFP acquisition data over an acceleration/undersampling factor (R) considering a range of 2 to 8. Quality imperceptibility (QI) measures, including structural similarity index measure, were calculated using images reconstructed from fully sampled k‐space as a reference. Image quality, including contrast and edge definition, was evaluated for diagnostic adequacy by three readers with varying levels of experience in cardiac MRI (&gt;4 years, &gt;18 years, and 1 year). Automated DL‐based biventricular segmentation was performed commercially available software by cardiac radiologists with more than 4 years of experience. Statistical Tests Tukey box plots, linear mixed effects model, analysis of variance (ANOVA), weighted kappa, Kruskal–Wallis test, and Wilcoxon signed‐rank test were employed as appropriate. A P‐value &lt;0.05 was considered statistically significant. Results There was a significant decrease in the QI values and edge definition scores as R increased. Diagnostically adequate image quality was observed up to R = 5. The effect of R on all biventricular volumetric indices was non‐significant (P = 0.447). Data Conclusion The biventricular volumetric indices obtained from the reconstruction of fully sampled cine bSSFP acquisitions and DLR of the same k‐space data undersampled by C‐SENSE up to R = 5 may be comparable. Evidence Level 3 Technical Efficacy Stage 1</description><subject>adaptive intelligence</subject><subject>Adolescent</subject><subject>Adult</subject><subject>biventricular volume</subject><subject>Breath Holding</subject><subject>cardiac MRI</subject><subject>Child</subject><subject>cine imaging</subject><subject>compressed SENSE</subject><subject>Data acquisition</subject><subject>Deep Learning</subject><subject>Evaluation</subject><subject>Female</subject><subject>Field strength</subject><subject>Heart</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Rank tests</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical tests</subject><subject>Variance analysis</subject><subject>Young Adult</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kM9uFDEMhyNERUvhwgOgSFwQ0pQkM5kk3Jal0KJFSIWeg9fjQVnNnyWZAe2NR-gz8iRku4UDB0625U8_2R9jT6Q4k0Kol5s-hjPlhJX32InUShVK2_p-7oUuC2mFOWYPU9oIIZyr9AN2XBqrtdLmhH1ZIFJHESZq-DIMxJcQmwDIP1xd8usUhq_8DdGWrwjikKdfP29eQ8rwFeE4pCnOOIVxeMUX_NMuTdTDFJCff4duhv3iETtqoUv0-K6esuu355-XF8Xq47vL5WJVYKWdLFRVl6ZygAiqblG7srU1Ytni2ph15aQBcm4tJIBzZFsNLUqUpBWibpqyPGXPD7nbOH6bKU2-Dym_1sFA45y8ssZVotZWZfTZP-hmnOOQr_OlMNaaSro6Uy8OFMYxpUit38bQQ9x5Kfzeu99797feM_z0LnJe99T8Rf-IzoA8AD9CR7v_RPn3Wfwh9DfT4442</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Pednekar, Amol</creator><creator>Kocaoglu, Murat</creator><creator>Wang, Hui</creator><creator>Tanimoto, Aki</creator><creator>Tkach, Jean A.</creator><creator>Lang, Sean</creator><creator>Taylor, Michael D.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4804-8789</orcidid><orcidid>https://orcid.org/0000-0002-5686-3417</orcidid><orcidid>https://orcid.org/0000-0003-4593-7481</orcidid></search><sort><creationdate>202408</creationdate><title>Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation</title><author>Pednekar, Amol ; Kocaoglu, Murat ; Wang, Hui ; Tanimoto, Aki ; Tkach, Jean A. ; Lang, Sean ; Taylor, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-2463749acca26fc593f86cc3fcb77b4917ae99b01aa99e8f5afc1c1e52cc5dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive intelligence</topic><topic>Adolescent</topic><topic>Adult</topic><topic>biventricular volume</topic><topic>Breath Holding</topic><topic>cardiac MRI</topic><topic>Child</topic><topic>cine imaging</topic><topic>compressed SENSE</topic><topic>Data acquisition</topic><topic>Deep Learning</topic><topic>Evaluation</topic><topic>Female</topic><topic>Field strength</topic><topic>Heart</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Rank tests</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical tests</topic><topic>Variance analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pednekar, Amol</creatorcontrib><creatorcontrib>Kocaoglu, Murat</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Tanimoto, Aki</creatorcontrib><creatorcontrib>Tkach, Jean A.</creatorcontrib><creatorcontrib>Lang, Sean</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pednekar, Amol</au><au>Kocaoglu, Murat</au><au>Wang, Hui</au><au>Tanimoto, Aki</au><au>Tkach, Jean A.</au><au>Lang, Sean</au><au>Taylor, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2024-08</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>640</spage><epage>650</epage><pages>640-650</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background Breath‐holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning‐based reconstruction (DLR) of undersampled k‐space promises to shorten BHs while preserving image quality and accuracy of ventricular assessment. Purpose To perform a systematic evaluation of DLR of cine bSSFP images from undersampled k‐space over a range of acceleration factors. Study Type Retrospective. Subjects Fifteen pectus excavatum patients (mean age 16.8 ± 5.4 years, 20% female) with normal cardiac anatomy and function and 12‐second BH capability. Field Strength/Sequence 1.5‐T, cine bSSFP. Assessment Retrospective DLR was conducted by applying compressed sensitivity encoding (C‐SENSE) acceleration to systematically undersample fully sampled k‐space cine bSSFP acquisition data over an acceleration/undersampling factor (R) considering a range of 2 to 8. Quality imperceptibility (QI) measures, including structural similarity index measure, were calculated using images reconstructed from fully sampled k‐space as a reference. Image quality, including contrast and edge definition, was evaluated for diagnostic adequacy by three readers with varying levels of experience in cardiac MRI (&gt;4 years, &gt;18 years, and 1 year). Automated DL‐based biventricular segmentation was performed commercially available software by cardiac radiologists with more than 4 years of experience. Statistical Tests Tukey box plots, linear mixed effects model, analysis of variance (ANOVA), weighted kappa, Kruskal–Wallis test, and Wilcoxon signed‐rank test were employed as appropriate. A P‐value &lt;0.05 was considered statistically significant. Results There was a significant decrease in the QI values and edge definition scores as R increased. Diagnostically adequate image quality was observed up to R = 5. The effect of R on all biventricular volumetric indices was non‐significant (P = 0.447). Data Conclusion The biventricular volumetric indices obtained from the reconstruction of fully sampled cine bSSFP acquisitions and DLR of the same k‐space data undersampled by C‐SENSE up to R = 5 may be comparable. Evidence Level 3 Technical Efficacy Stage 1</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37855257</pmid><doi>10.1002/jmri.29081</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4804-8789</orcidid><orcidid>https://orcid.org/0000-0002-5686-3417</orcidid><orcidid>https://orcid.org/0000-0003-4593-7481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2024-08, Vol.60 (2), p.640-650
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2879406582
source Access via Wiley Online Library; MEDLINE
subjects adaptive intelligence
Adolescent
Adult
biventricular volume
Breath Holding
cardiac MRI
Child
cine imaging
compressed SENSE
Data acquisition
Deep Learning
Evaluation
Female
Field strength
Heart
Heart - diagnostic imaging
Humans
Image acquisition
Image contrast
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine - methods
Male
Medical imaging
Rank tests
Reproducibility of Results
Retrospective Studies
Statistical analysis
Statistical models
Statistical tests
Variance analysis
Young Adult
title Accelerated Cine Cardiac MRI Using Deep Learning‐Based Reconstruction: A Systematic Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Cine%20Cardiac%20MRI%20Using%20Deep%20Learning%E2%80%90Based%20Reconstruction:%20A%20Systematic%20Evaluation&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Pednekar,%20Amol&rft.date=2024-08&rft.volume=60&rft.issue=2&rft.spage=640&rft.epage=650&rft.pages=640-650&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29081&rft_dat=%3Cproquest_cross%3E2879406582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078874196&rft_id=info:pmid/37855257&rfr_iscdi=true