IC outlier identification using multiple test metrics

With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE design & test of computers 2005-11, Vol.22 (6), p.586-595, Article 586
Hauptverfasser: Sabade, S.S., Walker, D.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 6
container_start_page 586
container_title IEEE design & test of computers
container_volume 22
creator Sabade, S.S.
Walker, D.M.
description With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.
doi_str_mv 10.1109/MDT.2005.143
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28790608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1541924</ieee_id><sourcerecordid>2543564591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv3rwED-LB1Nnv7FHqV6HipZ5Dsp3IljSpu5uD_96tFYSCngaG532ZeQg5pzChFMzty_1iwgDkhAp-QEZUyiKnhhaHZARaQK6FlsfkJIQVAFCq1IjI2TTrh9g69JlbYhdd42wVXd9lQ3Dde7Ye2ug2LWYRQ8zWGL2z4ZQcNVUb8Oxnjsnb48Ni-pzPX59m07t5brlQMWdcIFgFdQ3GaADFrdLcFpopxbFBxtJGQ4XAWG01V6LiSwnaNjUv5NLyMbna9W58_zGkA8q1CxbbtuqwH0LJCm1AQZHA639BCtQow7iBhF7uoat-8F16ozSUgUrH0QTd7CDr-xA8NuXGu3XlP1NTuXVdJtfl1nWZXCec7eHWxW-L0Veu_St0sQs5RPztl4IaJvgXNzaISw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912067261</pqid></control><display><type>article</type><title>IC outlier identification using multiple test metrics</title><source>IEEE Electronic Library (IEL)</source><creator>Sabade, S.S. ; Walker, D.M.</creator><creatorcontrib>Sabade, S.S. ; Walker, D.M.</creatorcontrib><description>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</description><identifier>ISSN: 0740-7475</identifier><identifier>ISSN: 2168-2356</identifier><identifier>EISSN: 1558-1918</identifier><identifier>EISSN: 2168-2364</identifier><identifier>DOI: 10.1109/MDT.2005.143</identifier><identifier>CODEN: IDTCEC</identifier><language>eng</language><publisher>Los Alamitos: IEEE Computer Society</publisher><subject>and Fault-Tolerance ; Chips ; Control Structure Reliability ; Correlation ; Design engineering ; Gaussian distribution ; Instruments ; Integrated circuit testing ; Leakage current ; Manufacturing ; Mathematical analysis ; Mathematical models ; Performance evaluation ; Probability ; Process controls ; Process parameters ; Reliability and Testing ; Screening ; Studies ; Sun ; Testing ; Vectors (mathematics) ; Very large scale integration</subject><ispartof>IEEE design &amp; test of computers, 2005-11, Vol.22 (6), p.586-595, Article 586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</citedby><cites>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1541924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1541924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sabade, S.S.</creatorcontrib><creatorcontrib>Walker, D.M.</creatorcontrib><title>IC outlier identification using multiple test metrics</title><title>IEEE design &amp; test of computers</title><addtitle>MDT</addtitle><description>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</description><subject>and Fault-Tolerance</subject><subject>Chips</subject><subject>Control Structure Reliability</subject><subject>Correlation</subject><subject>Design engineering</subject><subject>Gaussian distribution</subject><subject>Instruments</subject><subject>Integrated circuit testing</subject><subject>Leakage current</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Reliability and Testing</subject><subject>Screening</subject><subject>Studies</subject><subject>Sun</subject><subject>Testing</subject><subject>Vectors (mathematics)</subject><subject>Very large scale integration</subject><issn>0740-7475</issn><issn>2168-2356</issn><issn>1558-1918</issn><issn>2168-2364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZv3rwED-LB1Nnv7FHqV6HipZ5Dsp3IljSpu5uD_96tFYSCngaG532ZeQg5pzChFMzty_1iwgDkhAp-QEZUyiKnhhaHZARaQK6FlsfkJIQVAFCq1IjI2TTrh9g69JlbYhdd42wVXd9lQ3Dde7Ye2ug2LWYRQ8zWGL2z4ZQcNVUb8Oxnjsnb48Ni-pzPX59m07t5brlQMWdcIFgFdQ3GaADFrdLcFpopxbFBxtJGQ4XAWG01V6LiSwnaNjUv5NLyMbna9W58_zGkA8q1CxbbtuqwH0LJCm1AQZHA639BCtQow7iBhF7uoat-8F16ozSUgUrH0QTd7CDr-xA8NuXGu3XlP1NTuXVdJtfl1nWZXCec7eHWxW-L0Veu_St0sQs5RPztl4IaJvgXNzaISw</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Sabade, S.S.</creator><creator>Walker, D.M.</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051101</creationdate><title>IC outlier identification using multiple test metrics</title><author>Sabade, S.S. ; Walker, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>and Fault-Tolerance</topic><topic>Chips</topic><topic>Control Structure Reliability</topic><topic>Correlation</topic><topic>Design engineering</topic><topic>Gaussian distribution</topic><topic>Instruments</topic><topic>Integrated circuit testing</topic><topic>Leakage current</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Reliability and Testing</topic><topic>Screening</topic><topic>Studies</topic><topic>Sun</topic><topic>Testing</topic><topic>Vectors (mathematics)</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabade, S.S.</creatorcontrib><creatorcontrib>Walker, D.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE design &amp; test of computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sabade, S.S.</au><au>Walker, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IC outlier identification using multiple test metrics</atitle><jtitle>IEEE design &amp; test of computers</jtitle><stitle>MDT</stitle><date>2005-11-01</date><risdate>2005</risdate><volume>22</volume><issue>6</issue><spage>586</spage><epage>595</epage><pages>586-595</pages><artnum>586</artnum><issn>0740-7475</issn><issn>2168-2356</issn><eissn>1558-1918</eissn><eissn>2168-2364</eissn><coden>IDTCEC</coden><abstract>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</abstract><cop>Los Alamitos</cop><pub>IEEE Computer Society</pub><doi>10.1109/MDT.2005.143</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0740-7475
ispartof IEEE design & test of computers, 2005-11, Vol.22 (6), p.586-595, Article 586
issn 0740-7475
2168-2356
1558-1918
2168-2364
language eng
recordid cdi_proquest_miscellaneous_28790608
source IEEE Electronic Library (IEL)
subjects and Fault-Tolerance
Chips
Control Structure Reliability
Correlation
Design engineering
Gaussian distribution
Instruments
Integrated circuit testing
Leakage current
Manufacturing
Mathematical analysis
Mathematical models
Performance evaluation
Probability
Process controls
Process parameters
Reliability and Testing
Screening
Studies
Sun
Testing
Vectors (mathematics)
Very large scale integration
title IC outlier identification using multiple test metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IC%20outlier%20identification%20using%20multiple%20test%20metrics&rft.jtitle=IEEE%20design%20&%20test%20of%20computers&rft.au=Sabade,%20S.S.&rft.date=2005-11-01&rft.volume=22&rft.issue=6&rft.spage=586&rft.epage=595&rft.pages=586-595&rft.artnum=586&rft.issn=0740-7475&rft.eissn=1558-1918&rft.coden=IDTCEC&rft_id=info:doi/10.1109/MDT.2005.143&rft_dat=%3Cproquest_RIE%3E2543564591%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912067261&rft_id=info:pmid/&rft_ieee_id=1541924&rfr_iscdi=true