IC outlier identification using multiple test metrics
With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessar...
Gespeichert in:
Veröffentlicht in: | IEEE design & test of computers 2005-11, Vol.22 (6), p.586-595, Article 586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 6 |
container_start_page | 586 |
container_title | IEEE design & test of computers |
container_volume | 22 |
creator | Sabade, S.S. Walker, D.M. |
description | With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs. |
doi_str_mv | 10.1109/MDT.2005.143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28790608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1541924</ieee_id><sourcerecordid>2543564591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv3rwED-LB1Nnv7FHqV6HipZ5Dsp3IljSpu5uD_96tFYSCngaG532ZeQg5pzChFMzty_1iwgDkhAp-QEZUyiKnhhaHZARaQK6FlsfkJIQVAFCq1IjI2TTrh9g69JlbYhdd42wVXd9lQ3Dde7Ye2ug2LWYRQ8zWGL2z4ZQcNVUb8Oxnjsnb48Ni-pzPX59m07t5brlQMWdcIFgFdQ3GaADFrdLcFpopxbFBxtJGQ4XAWG01V6LiSwnaNjUv5NLyMbna9W58_zGkA8q1CxbbtuqwH0LJCm1AQZHA639BCtQow7iBhF7uoat-8F16ozSUgUrH0QTd7CDr-xA8NuXGu3XlP1NTuXVdJtfl1nWZXCec7eHWxW-L0Veu_St0sQs5RPztl4IaJvgXNzaISw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912067261</pqid></control><display><type>article</type><title>IC outlier identification using multiple test metrics</title><source>IEEE Electronic Library (IEL)</source><creator>Sabade, S.S. ; Walker, D.M.</creator><creatorcontrib>Sabade, S.S. ; Walker, D.M.</creatorcontrib><description>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</description><identifier>ISSN: 0740-7475</identifier><identifier>ISSN: 2168-2356</identifier><identifier>EISSN: 1558-1918</identifier><identifier>EISSN: 2168-2364</identifier><identifier>DOI: 10.1109/MDT.2005.143</identifier><identifier>CODEN: IDTCEC</identifier><language>eng</language><publisher>Los Alamitos: IEEE Computer Society</publisher><subject>and Fault-Tolerance ; Chips ; Control Structure Reliability ; Correlation ; Design engineering ; Gaussian distribution ; Instruments ; Integrated circuit testing ; Leakage current ; Manufacturing ; Mathematical analysis ; Mathematical models ; Performance evaluation ; Probability ; Process controls ; Process parameters ; Reliability and Testing ; Screening ; Studies ; Sun ; Testing ; Vectors (mathematics) ; Very large scale integration</subject><ispartof>IEEE design & test of computers, 2005-11, Vol.22 (6), p.586-595, Article 586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</citedby><cites>FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1541924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1541924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sabade, S.S.</creatorcontrib><creatorcontrib>Walker, D.M.</creatorcontrib><title>IC outlier identification using multiple test metrics</title><title>IEEE design & test of computers</title><addtitle>MDT</addtitle><description>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</description><subject>and Fault-Tolerance</subject><subject>Chips</subject><subject>Control Structure Reliability</subject><subject>Correlation</subject><subject>Design engineering</subject><subject>Gaussian distribution</subject><subject>Instruments</subject><subject>Integrated circuit testing</subject><subject>Leakage current</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Reliability and Testing</subject><subject>Screening</subject><subject>Studies</subject><subject>Sun</subject><subject>Testing</subject><subject>Vectors (mathematics)</subject><subject>Very large scale integration</subject><issn>0740-7475</issn><issn>2168-2356</issn><issn>1558-1918</issn><issn>2168-2364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZv3rwED-LB1Nnv7FHqV6HipZ5Dsp3IljSpu5uD_96tFYSCngaG532ZeQg5pzChFMzty_1iwgDkhAp-QEZUyiKnhhaHZARaQK6FlsfkJIQVAFCq1IjI2TTrh9g69JlbYhdd42wVXd9lQ3Dde7Ye2ug2LWYRQ8zWGL2z4ZQcNVUb8Oxnjsnb48Ni-pzPX59m07t5brlQMWdcIFgFdQ3GaADFrdLcFpopxbFBxtJGQ4XAWG01V6LiSwnaNjUv5NLyMbna9W58_zGkA8q1CxbbtuqwH0LJCm1AQZHA639BCtQow7iBhF7uoat-8F16ozSUgUrH0QTd7CDr-xA8NuXGu3XlP1NTuXVdJtfl1nWZXCec7eHWxW-L0Veu_St0sQs5RPztl4IaJvgXNzaISw</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Sabade, S.S.</creator><creator>Walker, D.M.</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051101</creationdate><title>IC outlier identification using multiple test metrics</title><author>Sabade, S.S. ; Walker, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-234e0c60bb09970063c673c872663efe2263c70ae022bc7364a3d507cfb385dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>and Fault-Tolerance</topic><topic>Chips</topic><topic>Control Structure Reliability</topic><topic>Correlation</topic><topic>Design engineering</topic><topic>Gaussian distribution</topic><topic>Instruments</topic><topic>Integrated circuit testing</topic><topic>Leakage current</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Reliability and Testing</topic><topic>Screening</topic><topic>Studies</topic><topic>Sun</topic><topic>Testing</topic><topic>Vectors (mathematics)</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabade, S.S.</creatorcontrib><creatorcontrib>Walker, D.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE design & test of computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sabade, S.S.</au><au>Walker, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IC outlier identification using multiple test metrics</atitle><jtitle>IEEE design & test of computers</jtitle><stitle>MDT</stitle><date>2005-11-01</date><risdate>2005</risdate><volume>22</volume><issue>6</issue><spage>586</spage><epage>595</epage><pages>586-595</pages><artnum>586</artnum><issn>0740-7475</issn><issn>2168-2356</issn><eissn>1558-1918</eissn><eissn>2168-2364</eissn><coden>IDTCEC</coden><abstract>With increasing variation in parametric data, it is necessary to adopt statistical means and correlations that consider other process parameters. Determining an appropriate threshold is difficult because of the several orders of magnitude variation in fault-free I/sub DDQ/. Therefore, it is necessary to use secondary information to identify outliers. This article proposed a combination of two I/sub DDQ/ test metrics for screening outlier chips by exploiting wafer-level spatial correlation. No single metric alone suffices to screen all outliers. The addition of a secondary metric also comes at the risk of additional yield loss. Maintaining stringent process control proves to be challenging for deer-submicron technologies. Therefore, understanding underlying process variables and their impact on test parameters are crucial for yield requirements. As I/sub DDQ/ test loses its effectiveness, it becomes necessary to correlate multiple test metrics, and a combination of multiple outlier screening methods might be necessary. A combination of CR and NCR with other test parameters can be useful for screening low-reliability chips, and an analysis of wafer patterns can be useful in reducing the number of required vector pairs.</abstract><cop>Los Alamitos</cop><pub>IEEE Computer Society</pub><doi>10.1109/MDT.2005.143</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0740-7475 |
ispartof | IEEE design & test of computers, 2005-11, Vol.22 (6), p.586-595, Article 586 |
issn | 0740-7475 2168-2356 1558-1918 2168-2364 |
language | eng |
recordid | cdi_proquest_miscellaneous_28790608 |
source | IEEE Electronic Library (IEL) |
subjects | and Fault-Tolerance Chips Control Structure Reliability Correlation Design engineering Gaussian distribution Instruments Integrated circuit testing Leakage current Manufacturing Mathematical analysis Mathematical models Performance evaluation Probability Process controls Process parameters Reliability and Testing Screening Studies Sun Testing Vectors (mathematics) Very large scale integration |
title | IC outlier identification using multiple test metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IC%20outlier%20identification%20using%20multiple%20test%20metrics&rft.jtitle=IEEE%20design%20&%20test%20of%20computers&rft.au=Sabade,%20S.S.&rft.date=2005-11-01&rft.volume=22&rft.issue=6&rft.spage=586&rft.epage=595&rft.pages=586-595&rft.artnum=586&rft.issn=0740-7475&rft.eissn=1558-1918&rft.coden=IDTCEC&rft_id=info:doi/10.1109/MDT.2005.143&rft_dat=%3Cproquest_RIE%3E2543564591%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912067261&rft_id=info:pmid/&rft_ieee_id=1541924&rfr_iscdi=true |