Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling
Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-11, Vol.15 (42), p.17124-17137 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17137 |
---|---|
container_issue | 42 |
container_start_page | 17124 |
container_title | Nanoscale |
container_volume | 15 |
creator | Wang, Yang Li, Zhaofan Sun, Dali Jiang, Naisheng Niu, Kangmin Giuntoli, Andrea Xia, Wenjie |
description | Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites
via
atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties. |
doi_str_mv | 10.1039/d3nr03618a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878711146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878711146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRsFY3_oKAGxGi80pmsiz1CUVB7DpMJjfNlGQmzqSF7vzpTq24cHE4Z_Fx7oWD0CXBtwSz4q5m1mOWE6mO0IRijlPGBD3-yzk_RWchrDHOC5azCfpa2hp8GJWtjV0lYwt7-d71oFtljVZdUkGrtsb5xDXJyquhBQupB2Mb5zXUiXZ2vVmpMcbBdbsefGKVddr1gwtmhJBsjYqU8gHSWGBsJHtXQxdPnqOTRnUBLn59ipaPDx_z53Tx9vQyny1Szagc05plwDmtQRWKYJJJKWkmWCUJ8KzJqC5oRUEISWjOm4bzrCIiE1VV8YIyTdkUXR96B-8-NxDGsjdBQ9cpC24TSiqFFIQQnkf06h-6dhtv43eRkhmRTERN0c2B0t6F4KEpB2965XclweV-jPKevb7_jDFj38HRfpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885183718</pqid></control><display><type>article</type><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</creator><creatorcontrib>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</creatorcontrib><description>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites
via
atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03618a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Graphene ; Heterogeneity ; Mechanical properties ; Modelling ; Modulus of elasticity ; Molecular dynamics ; Nanocomposites ; Polymers ; Stiffness ; Storage modulus ; Temperature dependence ; Thermomechanical properties</subject><ispartof>Nanoscale, 2023-11, Vol.15 (42), p.17124-17137</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</citedby><cites>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</cites><orcidid>0000-0003-4900-1365 ; 0000-0001-7870-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Zhaofan</creatorcontrib><creatorcontrib>Sun, Dali</creatorcontrib><creatorcontrib>Jiang, Naisheng</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Giuntoli, Andrea</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><title>Nanoscale</title><description>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites
via
atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</description><subject>Graphene</subject><subject>Heterogeneity</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Storage modulus</subject><subject>Temperature dependence</subject><subject>Thermomechanical properties</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AUhQdRsFY3_oKAGxGi80pmsiz1CUVB7DpMJjfNlGQmzqSF7vzpTq24cHE4Z_Fx7oWD0CXBtwSz4q5m1mOWE6mO0IRijlPGBD3-yzk_RWchrDHOC5azCfpa2hp8GJWtjV0lYwt7-d71oFtljVZdUkGrtsb5xDXJyquhBQupB2Mb5zXUiXZ2vVmpMcbBdbsefGKVddr1gwtmhJBsjYqU8gHSWGBsJHtXQxdPnqOTRnUBLn59ipaPDx_z53Tx9vQyny1Szagc05plwDmtQRWKYJJJKWkmWCUJ8KzJqC5oRUEISWjOm4bzrCIiE1VV8YIyTdkUXR96B-8-NxDGsjdBQ9cpC24TSiqFFIQQnkf06h-6dhtv43eRkhmRTERN0c2B0t6F4KEpB2965XclweV-jPKevb7_jDFj38HRfpI</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Wang, Yang</creator><creator>Li, Zhaofan</creator><creator>Sun, Dali</creator><creator>Jiang, Naisheng</creator><creator>Niu, Kangmin</creator><creator>Giuntoli, Andrea</creator><creator>Xia, Wenjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4900-1365</orcidid><orcidid>https://orcid.org/0000-0001-7870-0128</orcidid></search><sort><creationdate>20231102</creationdate><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><author>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graphene</topic><topic>Heterogeneity</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Storage modulus</topic><topic>Temperature dependence</topic><topic>Thermomechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Zhaofan</creatorcontrib><creatorcontrib>Sun, Dali</creatorcontrib><creatorcontrib>Jiang, Naisheng</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Giuntoli, Andrea</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Li, Zhaofan</au><au>Sun, Dali</au><au>Jiang, Naisheng</au><au>Niu, Kangmin</au><au>Giuntoli, Andrea</au><au>Xia, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</atitle><jtitle>Nanoscale</jtitle><date>2023-11-02</date><risdate>2023</risdate><volume>15</volume><issue>42</issue><spage>17124</spage><epage>17137</epage><pages>17124-17137</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites
via
atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03618a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4900-1365</orcidid><orcidid>https://orcid.org/0000-0001-7870-0128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-11, Vol.15 (42), p.17124-17137 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2878711146 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Graphene Heterogeneity Mechanical properties Modelling Modulus of elasticity Molecular dynamics Nanocomposites Polymers Stiffness Storage modulus Temperature dependence Thermomechanical properties |
title | Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20thermomechanical%20behavior%20of%20graphene-reinforced%20conjugated%20polymer%20nanocomposites%20via%20coarse-grained%20modeling&rft.jtitle=Nanoscale&rft.au=Wang,%20Yang&rft.date=2023-11-02&rft.volume=15&rft.issue=42&rft.spage=17124&rft.epage=17137&rft.pages=17124-17137&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03618a&rft_dat=%3Cproquest_cross%3E2878711146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885183718&rft_id=info:pmid/&rfr_iscdi=true |