Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling

Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-11, Vol.15 (42), p.17124-17137
Hauptverfasser: Wang, Yang, Li, Zhaofan, Sun, Dali, Jiang, Naisheng, Niu, Kangmin, Giuntoli, Andrea, Xia, Wenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17137
container_issue 42
container_start_page 17124
container_title Nanoscale
container_volume 15
creator Wang, Yang
Li, Zhaofan
Sun, Dali
Jiang, Naisheng
Niu, Kangmin
Giuntoli, Andrea
Xia, Wenjie
description Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.
doi_str_mv 10.1039/d3nr03618a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878711146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878711146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRsFY3_oKAGxGi80pmsiz1CUVB7DpMJjfNlGQmzqSF7vzpTq24cHE4Z_Fx7oWD0CXBtwSz4q5m1mOWE6mO0IRijlPGBD3-yzk_RWchrDHOC5azCfpa2hp8GJWtjV0lYwt7-d71oFtljVZdUkGrtsb5xDXJyquhBQupB2Mb5zXUiXZ2vVmpMcbBdbsefGKVddr1gwtmhJBsjYqU8gHSWGBsJHtXQxdPnqOTRnUBLn59ipaPDx_z53Tx9vQyny1Szagc05plwDmtQRWKYJJJKWkmWCUJ8KzJqC5oRUEISWjOm4bzrCIiE1VV8YIyTdkUXR96B-8-NxDGsjdBQ9cpC24TSiqFFIQQnkf06h-6dhtv43eRkhmRTERN0c2B0t6F4KEpB2965XclweV-jPKevb7_jDFj38HRfpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885183718</pqid></control><display><type>article</type><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</creator><creatorcontrib>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</creatorcontrib><description>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03618a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Graphene ; Heterogeneity ; Mechanical properties ; Modelling ; Modulus of elasticity ; Molecular dynamics ; Nanocomposites ; Polymers ; Stiffness ; Storage modulus ; Temperature dependence ; Thermomechanical properties</subject><ispartof>Nanoscale, 2023-11, Vol.15 (42), p.17124-17137</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</citedby><cites>FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</cites><orcidid>0000-0003-4900-1365 ; 0000-0001-7870-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Zhaofan</creatorcontrib><creatorcontrib>Sun, Dali</creatorcontrib><creatorcontrib>Jiang, Naisheng</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Giuntoli, Andrea</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><title>Nanoscale</title><description>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</description><subject>Graphene</subject><subject>Heterogeneity</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Storage modulus</subject><subject>Temperature dependence</subject><subject>Thermomechanical properties</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AUhQdRsFY3_oKAGxGi80pmsiz1CUVB7DpMJjfNlGQmzqSF7vzpTq24cHE4Z_Fx7oWD0CXBtwSz4q5m1mOWE6mO0IRijlPGBD3-yzk_RWchrDHOC5azCfpa2hp8GJWtjV0lYwt7-d71oFtljVZdUkGrtsb5xDXJyquhBQupB2Mb5zXUiXZ2vVmpMcbBdbsefGKVddr1gwtmhJBsjYqU8gHSWGBsJHtXQxdPnqOTRnUBLn59ipaPDx_z53Tx9vQyny1Szagc05plwDmtQRWKYJJJKWkmWCUJ8KzJqC5oRUEISWjOm4bzrCIiE1VV8YIyTdkUXR96B-8-NxDGsjdBQ9cpC24TSiqFFIQQnkf06h-6dhtv43eRkhmRTERN0c2B0t6F4KEpB2965XclweV-jPKevb7_jDFj38HRfpI</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Wang, Yang</creator><creator>Li, Zhaofan</creator><creator>Sun, Dali</creator><creator>Jiang, Naisheng</creator><creator>Niu, Kangmin</creator><creator>Giuntoli, Andrea</creator><creator>Xia, Wenjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4900-1365</orcidid><orcidid>https://orcid.org/0000-0001-7870-0128</orcidid></search><sort><creationdate>20231102</creationdate><title>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</title><author>Wang, Yang ; Li, Zhaofan ; Sun, Dali ; Jiang, Naisheng ; Niu, Kangmin ; Giuntoli, Andrea ; Xia, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d35e442dea9a10158882573b81e45f52c92b2e7781264ff445b1757bbb4923c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graphene</topic><topic>Heterogeneity</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Storage modulus</topic><topic>Temperature dependence</topic><topic>Thermomechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Zhaofan</creatorcontrib><creatorcontrib>Sun, Dali</creatorcontrib><creatorcontrib>Jiang, Naisheng</creatorcontrib><creatorcontrib>Niu, Kangmin</creatorcontrib><creatorcontrib>Giuntoli, Andrea</creatorcontrib><creatorcontrib>Xia, Wenjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Li, Zhaofan</au><au>Sun, Dali</au><au>Jiang, Naisheng</au><au>Niu, Kangmin</au><au>Giuntoli, Andrea</au><au>Xia, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling</atitle><jtitle>Nanoscale</jtitle><date>2023-11-02</date><risdate>2023</risdate><volume>15</volume><issue>42</issue><spage>17124</spage><epage>17137</epage><pages>17124-17137</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the “Halpin–Tsai” micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03618a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4900-1365</orcidid><orcidid>https://orcid.org/0000-0001-7870-0128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-11, Vol.15 (42), p.17124-17137
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2878711146
source Royal Society Of Chemistry Journals 2008-
subjects Graphene
Heterogeneity
Mechanical properties
Modelling
Modulus of elasticity
Molecular dynamics
Nanocomposites
Polymers
Stiffness
Storage modulus
Temperature dependence
Thermomechanical properties
title Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20thermomechanical%20behavior%20of%20graphene-reinforced%20conjugated%20polymer%20nanocomposites%20via%20coarse-grained%20modeling&rft.jtitle=Nanoscale&rft.au=Wang,%20Yang&rft.date=2023-11-02&rft.volume=15&rft.issue=42&rft.spage=17124&rft.epage=17137&rft.pages=17124-17137&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03618a&rft_dat=%3Cproquest_cross%3E2878711146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885183718&rft_id=info:pmid/&rfr_iscdi=true