Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties

Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the T g and thermal stability of the copolymers through formation of anhydride...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2005-04, Vol.46 (10), p.3407-3418
Hauptverfasser: Wang, M., Hsieh, A.J., Rutledge, G.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3418
container_issue 10
container_start_page 3407
container_title Polymer (Guilford)
container_volume 46
creator Wang, M.
Hsieh, A.J.
Rutledge, G.C.
description Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the T g and thermal stability of the copolymers through formation of anhydrides upon heating. Fibers of uniform diameters were obtained for the poly(MMA- co-MAA) copolymers and nanocomposites containing montmorillonite (MMT), while protrusions were observed on the electrospun fibers from nanocomposites containing fluorohectorite (FH). The electrospinnability of copolymer solutions and nanocomposite dispersions predicted based on both rheological analyses and conductivity measurements correlates well with the experimental electrospinning observations. Dispersion of clays within the nanocomposites improved the electrospinnability of the nanocomposite dispersions. MMT is predominantly exfoliated and well distributed within the fiber and oriented along the fiber axis. Char formation was observed when the MMT-containing fibers were heated above the decomposition temperature, indicating a potential for reduced flammability and increased self-extinguishing properties, whereas the FH-containing materials disintegrated into either film or powder form.
doi_str_mv 10.1016/j.polymer.2005.02.099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28787014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386105002880</els_id><sourcerecordid>28787014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-bd2e9f322b6a4317b238dccb57913707d7a6eb148ee5555eb0f044660cf1df933</originalsourceid><addsrcrecordid>eNqNUUuLFDEQDovCjqs_YSEXRQ_dVh79OsmwrK6wgxc9h3S6smZIJ23SuzD_fjPOgEe3LkXB9yi-j5BrBjUD1n7e10v0hxlTzQGaGngNw3BBNqzvRMX5wF6RDYDglehbdkne5LwHAN5wuSGHW49mTTEvLgQXHmi09Kj2cbfbVtTEarfdfir77JCpDhNdf6NL1OsDJpxodt4ZvSINOkQT5yVmt2KmNibq5iXFJ_xLSbP2tJwLptVhfkteW-0zvjvvK_Lr6-3Pm7vq_se37zfb-8pIYGs1ThwHKzgfWy0F60Yu-smYsekGJjropk63ODLZIzZlcAQLUrYtGMsmOwhxRT6cdIv1n0fMq5pdNui9Dhgfs-J913fA5AuAjWTlkQJsTkBTcssJrVqSm3U6KAbq2Ijaq3Ne6tiIAq5KI4X3_mygs9HeJh2My__IbTtIzo64LyccllieXFHJxmEwOLlUylJTdP9xegZ2y6ZX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28541322</pqid></control><display><type>article</type><title>Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, M. ; Hsieh, A.J. ; Rutledge, G.C.</creator><creatorcontrib>Wang, M. ; Hsieh, A.J. ; Rutledge, G.C.</creatorcontrib><description>Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the T g and thermal stability of the copolymers through formation of anhydrides upon heating. Fibers of uniform diameters were obtained for the poly(MMA- co-MAA) copolymers and nanocomposites containing montmorillonite (MMT), while protrusions were observed on the electrospun fibers from nanocomposites containing fluorohectorite (FH). The electrospinnability of copolymer solutions and nanocomposite dispersions predicted based on both rheological analyses and conductivity measurements correlates well with the experimental electrospinning observations. Dispersion of clays within the nanocomposites improved the electrospinnability of the nanocomposite dispersions. MMT is predominantly exfoliated and well distributed within the fiber and oriented along the fiber axis. Char formation was observed when the MMT-containing fibers were heated above the decomposition temperature, indicating a potential for reduced flammability and increased self-extinguishing properties, whereas the FH-containing materials disintegrated into either film or powder form.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2005.02.099</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Composites ; Electrospinning ; Exact sciences and technology ; Forms of application and semi-finished materials ; Nanocomposite ; Nanofiber ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer (Guilford), 2005-04, Vol.46 (10), p.3407-3418</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-bd2e9f322b6a4317b238dccb57913707d7a6eb148ee5555eb0f044660cf1df933</citedby><cites>FETCH-LOGICAL-c401t-bd2e9f322b6a4317b238dccb57913707d7a6eb148ee5555eb0f044660cf1df933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2005.02.099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16694219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Hsieh, A.J.</creatorcontrib><creatorcontrib>Rutledge, G.C.</creatorcontrib><title>Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties</title><title>Polymer (Guilford)</title><description>Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the T g and thermal stability of the copolymers through formation of anhydrides upon heating. Fibers of uniform diameters were obtained for the poly(MMA- co-MAA) copolymers and nanocomposites containing montmorillonite (MMT), while protrusions were observed on the electrospun fibers from nanocomposites containing fluorohectorite (FH). The electrospinnability of copolymer solutions and nanocomposite dispersions predicted based on both rheological analyses and conductivity measurements correlates well with the experimental electrospinning observations. Dispersion of clays within the nanocomposites improved the electrospinnability of the nanocomposite dispersions. MMT is predominantly exfoliated and well distributed within the fiber and oriented along the fiber axis. Char formation was observed when the MMT-containing fibers were heated above the decomposition temperature, indicating a potential for reduced flammability and increased self-extinguishing properties, whereas the FH-containing materials disintegrated into either film or powder form.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanocomposite</subject><subject>Nanofiber</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNUUuLFDEQDovCjqs_YSEXRQ_dVh79OsmwrK6wgxc9h3S6smZIJ23SuzD_fjPOgEe3LkXB9yi-j5BrBjUD1n7e10v0hxlTzQGaGngNw3BBNqzvRMX5wF6RDYDglehbdkne5LwHAN5wuSGHW49mTTEvLgQXHmi09Kj2cbfbVtTEarfdfir77JCpDhNdf6NL1OsDJpxodt4ZvSINOkQT5yVmt2KmNibq5iXFJ_xLSbP2tJwLptVhfkteW-0zvjvvK_Lr6-3Pm7vq_se37zfb-8pIYGs1ThwHKzgfWy0F60Yu-smYsekGJjropk63ODLZIzZlcAQLUrYtGMsmOwhxRT6cdIv1n0fMq5pdNui9Dhgfs-J913fA5AuAjWTlkQJsTkBTcssJrVqSm3U6KAbq2Ijaq3Ne6tiIAq5KI4X3_mygs9HeJh2My__IbTtIzo64LyccllieXFHJxmEwOLlUylJTdP9xegZ2y6ZX</recordid><startdate>20050425</startdate><enddate>20050425</enddate><creator>Wang, M.</creator><creator>Hsieh, A.J.</creator><creator>Rutledge, G.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20050425</creationdate><title>Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties</title><author>Wang, M. ; Hsieh, A.J. ; Rutledge, G.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-bd2e9f322b6a4317b238dccb57913707d7a6eb148ee5555eb0f044660cf1df933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanocomposite</topic><topic>Nanofiber</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, M.</creatorcontrib><creatorcontrib>Hsieh, A.J.</creatorcontrib><creatorcontrib>Rutledge, G.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, M.</au><au>Hsieh, A.J.</au><au>Rutledge, G.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties</atitle><jtitle>Polymer (Guilford)</jtitle><date>2005-04-25</date><risdate>2005</risdate><volume>46</volume><issue>10</issue><spage>3407</spage><epage>3418</epage><pages>3407-3418</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the T g and thermal stability of the copolymers through formation of anhydrides upon heating. Fibers of uniform diameters were obtained for the poly(MMA- co-MAA) copolymers and nanocomposites containing montmorillonite (MMT), while protrusions were observed on the electrospun fibers from nanocomposites containing fluorohectorite (FH). The electrospinnability of copolymer solutions and nanocomposite dispersions predicted based on both rheological analyses and conductivity measurements correlates well with the experimental electrospinning observations. Dispersion of clays within the nanocomposites improved the electrospinnability of the nanocomposite dispersions. MMT is predominantly exfoliated and well distributed within the fiber and oriented along the fiber axis. Char formation was observed when the MMT-containing fibers were heated above the decomposition temperature, indicating a potential for reduced flammability and increased self-extinguishing properties, whereas the FH-containing materials disintegrated into either film or powder form.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2005.02.099</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2005-04, Vol.46 (10), p.3407-3418
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_28787014
source Elsevier ScienceDirect Journals
subjects Applied sciences
Composites
Electrospinning
Exact sciences and technology
Forms of application and semi-finished materials
Nanocomposite
Nanofiber
Polymer industry, paints, wood
Technology of polymers
title Electrospinning of poly(MMA- co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20poly(MMA-%20co-MAA)%20copolymers%20and%20their%20layered%20silicate%20nanocomposites%20for%20improved%20thermal%20properties&rft.jtitle=Polymer%20(Guilford)&rft.au=Wang,%20M.&rft.date=2005-04-25&rft.volume=46&rft.issue=10&rft.spage=3407&rft.epage=3418&rft.pages=3407-3418&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2005.02.099&rft_dat=%3Cproquest_cross%3E28787014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28541322&rft_id=info:pmid/&rft_els_id=S0032386105002880&rfr_iscdi=true