Controlling the Energetic Properties of N‑Methylene-C-Linked 4‑Hydroxy-3,5-dinitropyrazole- and Tetrazole-Based Compounds via a Selective Mono- and Dicationic Salt Formation Strategy
In the quest to synthesize high-performing insensitive high-energy density materials (HEDMs), the main challenge is establishing an equilibrium between energy and stability. For this purpose, we explored 4-hydroxy-3,5-dinitropyrazole- and tetrazole-based energetic scaffolds connected via a N-methyle...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2023-11, Vol.88 (21), p.15085-15096 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the quest to synthesize high-performing insensitive high-energy density materials (HEDMs), the main challenge is establishing an equilibrium between energy and stability. For this purpose, we explored 4-hydroxy-3,5-dinitropyrazole- and tetrazole-based energetic scaffolds connected via a N-methylene-C bridge. The hydroxy functionality between nitro groups on the pyrazole ring promotes physical stability via inter- and intramolecular hydrogen bonding and contributes to oxygen balance, supporting better energetic performance. Due to two acidic sites (OH and NH) with different reactivities, a series of monocationic and dicationic salts were synthesized, and their overall performance was compared. All compounds synthesized in this study have high physical stability with impact sensitivity >40 J and friction sensitivity >360 N. Monocationic salts were generally found to have better thermal stability with respect to their corresponding dicationic energetic salts, which showed better energetic performance. The salt formation strategy effectively improved the thermal stability of 2 (T d = 168 °C), where most energetic salts have decomposition temperatures higher than 220 °C. All of the compounds were characterized through IR, multinuclear NMR spectroscopy, high-resolution mass spectrometry (HRMS), and elemental analysis. The structure–property relationship was studied using Hirshfeld surface analysis, noncovalent interaction (NCI) analysis, and electrostatic potential studies. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.3c01530 |