Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma

Background The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. Meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer 2024-02, Vol.130 (3), p.421-432
Hauptverfasser: Yan, Wenqiang, Xu, Jingyu, Fan, Huishou, Li, Lingna, Cui, Jian, Du, Chenxing, Deng, Shuhui, Sui, Weiwei, Xu, Yan, Hao, Mu, Anderson, Kenneth C., Zou, Dehui, Qiu, Lugui, An, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 3
container_start_page 421
container_title Cancer
container_volume 130
creator Yan, Wenqiang
Xu, Jingyu
Fan, Huishou
Li, Lingna
Cui, Jian
Du, Chenxing
Deng, Shuhui
Sui, Weiwei
Xu, Yan
Hao, Mu
Anderson, Kenneth C.
Zou, Dehui
Qiu, Lugui
An, Gang
description Background The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. Methods This study evaluated these ER definitions and further investigated the underlying relationship with static risk distribution in 629 newly diagnosed MM (NDMM) patients from the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Results These data indicated that early relapse within 18 months (ER18) after initial treatment was the best time point for identifying early progression and dynamic high‐risk in MM. The ER18 population (114 of 587, 19.4%) presented with more aggressive biologic features and the inferior response to treatment compared to a reference cohort (p 
doi_str_mv 10.1002/cncr.35056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878292071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920610463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2676-f62e2bdf4167b48261fbbed6ca9ca1ba9d0f35a1e7c7057611bce28df26f76f33</originalsourceid><addsrcrecordid>eNp9kUtq3TAUhkVoSG4ekyygCDoJBaeSbEu-w3JJmkJoIbSQmZD1aJTKkivJuXgN2UTXkpVV7k076KCDw-HAx3d--AE4w-gCI0TeSS_jRd2ilu6BFUZrViHckFdghRDqqrap7w7BUUoP5WSkrQ_AYc26hnZNuwJPlyK6GUbtxJg03Np8bz3E3fPPIfh8n6BNUMAxbHU0k4Nq9mKwEo5RKytziNCUGWP45kNaUK-gDJNTxfhoizBlkQsfbfoOlU052n7KNnhYvgyTy3Z0Gg6zdmEQJ2DfCJf06cs-Bl-vLr9srqubzx8-bt7fVJJQRitDiSa9Mg2mrG86QrHpe62oFGspcC_WCpm6FVgzyVDLKMa91KRThlDDqKnrY3C-85bcPyadMh9skto54XWYEicd68iaIIYL-uYf9CFM0Zd0fCEoRg1dhG93lIwhpagNH6MdRJw5RnypiC8V8d8VFfj1i3LqB63-on86KQDeAVvr9PwfFd982tzupL8Aw-Gfnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920610463</pqid></control><display><type>article</type><title>Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yan, Wenqiang ; Xu, Jingyu ; Fan, Huishou ; Li, Lingna ; Cui, Jian ; Du, Chenxing ; Deng, Shuhui ; Sui, Weiwei ; Xu, Yan ; Hao, Mu ; Anderson, Kenneth C. ; Zou, Dehui ; Qiu, Lugui ; An, Gang</creator><creatorcontrib>Yan, Wenqiang ; Xu, Jingyu ; Fan, Huishou ; Li, Lingna ; Cui, Jian ; Du, Chenxing ; Deng, Shuhui ; Sui, Weiwei ; Xu, Yan ; Hao, Mu ; Anderson, Kenneth C. ; Zou, Dehui ; Qiu, Lugui ; An, Gang</creatorcontrib><description>Background The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. Methods This study evaluated these ER definitions and further investigated the underlying relationship with static risk distribution in 629 newly diagnosed MM (NDMM) patients from the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Results These data indicated that early relapse within 18 months (ER18) after initial treatment was the best time point for identifying early progression and dynamic high‐risk in MM. The ER18 population (114 of 587, 19.4%) presented with more aggressive biologic features and the inferior response to treatment compared to a reference cohort (p &lt; .001), with a significantly short median overall survival (OS) of 28.9 months. Multivariate analyses confirmed the most significant prognostic value of ER18 on OS in the context of International Staging System stage, elevated lactate dehydrogenase, thrombocytopenia, cytogenetic abnormalities, and treatment (hazard ratio, 4.467; p &lt; .001). The authors also described the specific transitions from static risk profile to dynamic risk distribution and then constructed a mixed‐risk‐pattern to identify four novel populations with distinct survival (p &lt; .001). Additionally, the authors proposed a second‐state model that predicts dynamic risk changes, enabling a complementary role to the Revised International Staging System model in facilitating individualized systematic treatment. Conclusions Collectively, this study concludes that ER18 is a simple and dynamic prognostic predictor in MM. In addition to static risk assessment, dynamic risk plays an important role in survival prediction. The present study sheds light on the optimal time point for early relapse (ER), defined as relapse within 18 months after initial treatment, and highlights its significant dynamic predictive impact on the prognosis in multiple myeloma. Alongside the conventional static risk stratification at diagnosis, a second‐state model that incorporates ER reveals dynamic risk changes that facilitate individualized systematic treatment.</description><identifier>ISSN: 0008-543X</identifier><identifier>EISSN: 1097-0142</identifier><identifier>DOI: 10.1002/cncr.35056</identifier><identifier>PMID: 37846845</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Abnormalities ; Cytogenetics ; dynamic risk pattern ; early relapse ; Hematological diseases ; L-Lactate dehydrogenase ; Lactate dehydrogenase ; Medical prognosis ; Multiple myeloma ; Risk assessment ; risk stratification ; Survival ; Thrombocytopenia</subject><ispartof>Cancer, 2024-02, Vol.130 (3), p.421-432</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Cancer Society.</rights><rights>2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2676-f62e2bdf4167b48261fbbed6ca9ca1ba9d0f35a1e7c7057611bce28df26f76f33</cites><orcidid>0000-0002-6167-3319 ; 0000-0001-6813-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcncr.35056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcncr.35056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37846845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wenqiang</creatorcontrib><creatorcontrib>Xu, Jingyu</creatorcontrib><creatorcontrib>Fan, Huishou</creatorcontrib><creatorcontrib>Li, Lingna</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Du, Chenxing</creatorcontrib><creatorcontrib>Deng, Shuhui</creatorcontrib><creatorcontrib>Sui, Weiwei</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Hao, Mu</creatorcontrib><creatorcontrib>Anderson, Kenneth C.</creatorcontrib><creatorcontrib>Zou, Dehui</creatorcontrib><creatorcontrib>Qiu, Lugui</creatorcontrib><creatorcontrib>An, Gang</creatorcontrib><title>Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma</title><title>Cancer</title><addtitle>Cancer</addtitle><description>Background The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. Methods This study evaluated these ER definitions and further investigated the underlying relationship with static risk distribution in 629 newly diagnosed MM (NDMM) patients from the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Results These data indicated that early relapse within 18 months (ER18) after initial treatment was the best time point for identifying early progression and dynamic high‐risk in MM. The ER18 population (114 of 587, 19.4%) presented with more aggressive biologic features and the inferior response to treatment compared to a reference cohort (p &lt; .001), with a significantly short median overall survival (OS) of 28.9 months. Multivariate analyses confirmed the most significant prognostic value of ER18 on OS in the context of International Staging System stage, elevated lactate dehydrogenase, thrombocytopenia, cytogenetic abnormalities, and treatment (hazard ratio, 4.467; p &lt; .001). The authors also described the specific transitions from static risk profile to dynamic risk distribution and then constructed a mixed‐risk‐pattern to identify four novel populations with distinct survival (p &lt; .001). Additionally, the authors proposed a second‐state model that predicts dynamic risk changes, enabling a complementary role to the Revised International Staging System model in facilitating individualized systematic treatment. Conclusions Collectively, this study concludes that ER18 is a simple and dynamic prognostic predictor in MM. In addition to static risk assessment, dynamic risk plays an important role in survival prediction. The present study sheds light on the optimal time point for early relapse (ER), defined as relapse within 18 months after initial treatment, and highlights its significant dynamic predictive impact on the prognosis in multiple myeloma. Alongside the conventional static risk stratification at diagnosis, a second‐state model that incorporates ER reveals dynamic risk changes that facilitate individualized systematic treatment.</description><subject>Abnormalities</subject><subject>Cytogenetics</subject><subject>dynamic risk pattern</subject><subject>early relapse</subject><subject>Hematological diseases</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate dehydrogenase</subject><subject>Medical prognosis</subject><subject>Multiple myeloma</subject><subject>Risk assessment</subject><subject>risk stratification</subject><subject>Survival</subject><subject>Thrombocytopenia</subject><issn>0008-543X</issn><issn>1097-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kUtq3TAUhkVoSG4ekyygCDoJBaeSbEu-w3JJmkJoIbSQmZD1aJTKkivJuXgN2UTXkpVV7k076KCDw-HAx3d--AE4w-gCI0TeSS_jRd2ilu6BFUZrViHckFdghRDqqrap7w7BUUoP5WSkrQ_AYc26hnZNuwJPlyK6GUbtxJg03Np8bz3E3fPPIfh8n6BNUMAxbHU0k4Nq9mKwEo5RKytziNCUGWP45kNaUK-gDJNTxfhoizBlkQsfbfoOlU052n7KNnhYvgyTy3Z0Gg6zdmEQJ2DfCJf06cs-Bl-vLr9srqubzx8-bt7fVJJQRitDiSa9Mg2mrG86QrHpe62oFGspcC_WCpm6FVgzyVDLKMa91KRThlDDqKnrY3C-85bcPyadMh9skto54XWYEicd68iaIIYL-uYf9CFM0Zd0fCEoRg1dhG93lIwhpagNH6MdRJw5RnypiC8V8d8VFfj1i3LqB63-on86KQDeAVvr9PwfFd982tzupL8Aw-Gfnw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yan, Wenqiang</creator><creator>Xu, Jingyu</creator><creator>Fan, Huishou</creator><creator>Li, Lingna</creator><creator>Cui, Jian</creator><creator>Du, Chenxing</creator><creator>Deng, Shuhui</creator><creator>Sui, Weiwei</creator><creator>Xu, Yan</creator><creator>Hao, Mu</creator><creator>Anderson, Kenneth C.</creator><creator>Zou, Dehui</creator><creator>Qiu, Lugui</creator><creator>An, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6167-3319</orcidid><orcidid>https://orcid.org/0000-0001-6813-7810</orcidid></search><sort><creationdate>20240201</creationdate><title>Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma</title><author>Yan, Wenqiang ; Xu, Jingyu ; Fan, Huishou ; Li, Lingna ; Cui, Jian ; Du, Chenxing ; Deng, Shuhui ; Sui, Weiwei ; Xu, Yan ; Hao, Mu ; Anderson, Kenneth C. ; Zou, Dehui ; Qiu, Lugui ; An, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2676-f62e2bdf4167b48261fbbed6ca9ca1ba9d0f35a1e7c7057611bce28df26f76f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Cytogenetics</topic><topic>dynamic risk pattern</topic><topic>early relapse</topic><topic>Hematological diseases</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate dehydrogenase</topic><topic>Medical prognosis</topic><topic>Multiple myeloma</topic><topic>Risk assessment</topic><topic>risk stratification</topic><topic>Survival</topic><topic>Thrombocytopenia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenqiang</creatorcontrib><creatorcontrib>Xu, Jingyu</creatorcontrib><creatorcontrib>Fan, Huishou</creatorcontrib><creatorcontrib>Li, Lingna</creatorcontrib><creatorcontrib>Cui, Jian</creatorcontrib><creatorcontrib>Du, Chenxing</creatorcontrib><creatorcontrib>Deng, Shuhui</creatorcontrib><creatorcontrib>Sui, Weiwei</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Hao, Mu</creatorcontrib><creatorcontrib>Anderson, Kenneth C.</creatorcontrib><creatorcontrib>Zou, Dehui</creatorcontrib><creatorcontrib>Qiu, Lugui</creatorcontrib><creatorcontrib>An, Gang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenqiang</au><au>Xu, Jingyu</au><au>Fan, Huishou</au><au>Li, Lingna</au><au>Cui, Jian</au><au>Du, Chenxing</au><au>Deng, Shuhui</au><au>Sui, Weiwei</au><au>Xu, Yan</au><au>Hao, Mu</au><au>Anderson, Kenneth C.</au><au>Zou, Dehui</au><au>Qiu, Lugui</au><au>An, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma</atitle><jtitle>Cancer</jtitle><addtitle>Cancer</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>130</volume><issue>3</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>0008-543X</issn><eissn>1097-0142</eissn><abstract>Background The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. Methods This study evaluated these ER definitions and further investigated the underlying relationship with static risk distribution in 629 newly diagnosed MM (NDMM) patients from the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Results These data indicated that early relapse within 18 months (ER18) after initial treatment was the best time point for identifying early progression and dynamic high‐risk in MM. The ER18 population (114 of 587, 19.4%) presented with more aggressive biologic features and the inferior response to treatment compared to a reference cohort (p &lt; .001), with a significantly short median overall survival (OS) of 28.9 months. Multivariate analyses confirmed the most significant prognostic value of ER18 on OS in the context of International Staging System stage, elevated lactate dehydrogenase, thrombocytopenia, cytogenetic abnormalities, and treatment (hazard ratio, 4.467; p &lt; .001). The authors also described the specific transitions from static risk profile to dynamic risk distribution and then constructed a mixed‐risk‐pattern to identify four novel populations with distinct survival (p &lt; .001). Additionally, the authors proposed a second‐state model that predicts dynamic risk changes, enabling a complementary role to the Revised International Staging System model in facilitating individualized systematic treatment. Conclusions Collectively, this study concludes that ER18 is a simple and dynamic prognostic predictor in MM. In addition to static risk assessment, dynamic risk plays an important role in survival prediction. The present study sheds light on the optimal time point for early relapse (ER), defined as relapse within 18 months after initial treatment, and highlights its significant dynamic predictive impact on the prognosis in multiple myeloma. Alongside the conventional static risk stratification at diagnosis, a second‐state model that incorporates ER reveals dynamic risk changes that facilitate individualized systematic treatment.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37846845</pmid><doi>10.1002/cncr.35056</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6167-3319</orcidid><orcidid>https://orcid.org/0000-0001-6813-7810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-543X
ispartof Cancer, 2024-02, Vol.130 (3), p.421-432
issn 0008-543X
1097-0142
language eng
recordid cdi_proquest_miscellaneous_2878292071
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Abnormalities
Cytogenetics
dynamic risk pattern
early relapse
Hematological diseases
L-Lactate dehydrogenase
Lactate dehydrogenase
Medical prognosis
Multiple myeloma
Risk assessment
risk stratification
Survival
Thrombocytopenia
title Early relapse within 18 months is a powerful dynamic predictor for prognosis and could revise static risk distribution in multiple myeloma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20relapse%20within%2018%C2%A0months%20is%20a%20powerful%20dynamic%20predictor%20for%20prognosis%20and%20could%20revise%20static%20risk%20distribution%20in%20multiple%20myeloma&rft.jtitle=Cancer&rft.au=Yan,%20Wenqiang&rft.date=2024-02-01&rft.volume=130&rft.issue=3&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=0008-543X&rft.eissn=1097-0142&rft_id=info:doi/10.1002/cncr.35056&rft_dat=%3Cproquest_cross%3E2920610463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920610463&rft_id=info:pmid/37846845&rfr_iscdi=true