Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates

Spiral inductors and different types of transmission lines are fabricated by using copper (Cu)-damascene interconnects and high-resistivity silicon (HRS) or sapphire substrates. The fabrication process is compatible with the concepts of silicon device fabrication. Spiral inductors with 1.4-nH induct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1997-10, Vol.45 (10), p.1961-1968
Hauptverfasser: Burghartz, J.N., Edelstein, D.C., Jenkiin, K.A., Kwark, Y.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spiral inductors and different types of transmission lines are fabricated by using copper (Cu)-damascene interconnects and high-resistivity silicon (HRS) or sapphire substrates. The fabrication process is compatible with the concepts of silicon device fabrication. Spiral inductors with 1.4-nH inductance have quality factors (Q) of 30 at 5.2 GHz and 40 at 5.8 GHz for the HRS and the sapphire substrates, respectively. 80-nH inductors have Q's as high as 13. The transmission-line losses are near 4 dB/cm at 10 GHz for microstrips, inverted microstrips, and coplanar lines, which are sufficiently small for maximum line lengths within typical silicon-chip areas. This paper shows that inductors with high Q's for lumped-element designs in the 1-10-GHz range and transmission lines with low losses for distributed-element designs beyond 10 GHz can be made available with the proposed adjustments to commercial silicon technology.
ISSN:0018-9480
1557-9670
DOI:10.1109/22.641804