Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance
Main conclusion Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non - salt secretor mangroves are involved in the compartmentation of Na + and osmotic regulation, contributing to their salt tolerance. Salinity is a major abiotic stress affecting the distribution and...
Gespeichert in:
Veröffentlicht in: | Planta 2023-11, Vol.258 (5), p.100-100, Article 100 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 5 |
container_start_page | 100 |
container_title | Planta |
container_volume | 258 |
creator | Zhu, Xueyi Huang, Hezi Luo, Xu Wei, Yuanhai Du, Shuangling Yu, Jiamin Guo, Shengyu Chen, Kaiyun Chen, Linjiao |
description | Main conclusion
Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non
-
salt secretor mangroves are involved in the compartmentation of Na
+
and osmotic regulation, contributing to their salt tolerance.
Salinity is a major abiotic stress affecting the distribution and growth of mangrove plants. The salt exclusion mechanism from salt secretor mangrove leaves is quite known; however, salt management strategies in non-salt secretor leaves remain unclear. In this study, we reported the auto-fluorescent inclusions (AFIs) specifically accumulated in mesophyll cells (MCs) of four non-salt secretor mangroves but absent in three salt secretors. The AFIs increased with the leaf development under natural condition, and applied NaCl concentrations applied in the lab. The AFIs in MCs were isolated and identified as condensed tannin accretions (CTAs) using the dye dimethyl-amino-cinnamaldehyde (DMACA), specific for condensed tannin (CT), both in situ leaf cross sections and in the purified AFIs. Fluorescence microscopy and transmission electron microscope (TEM) analysis indicated that the CTAs originated from the inflated chloroplasts. The CTAs had an obvious membrane and could induce changes in shape and fluorescence intensity in hypotonic and hypertonic NaCl solutions, suggesting CTAs might have osmotic regulation ability and play an important role in the osmotic regulation in MCs. The purified CTAs were labeled by the fluorescent sodium-binding benzofuran isophthalate acetoxymethyl ester (SBFI-AM), confirming they were involved in the compartmentation of excess Na
+
in MCs. This study provided a new view on the salt resistance
-
associated strategies in mangroves. |
doi_str_mv | 10.1007/s00425-023-04254-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2878020858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877230390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-32a62c999d94dad1c2f5ac6e7ecedb97e8b5618fe2e369ae6529a40dd142a8683</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoINs0fyAnQS-9uBlLlm0dy5KmgUAv7VlopXHWi1ZyNN7CHvLfK2cDgRxymgfzvceDx9h1Dd9rgO6GABqhKhCyWkRTqTO2qhspKgFN_4mtAIoGLdUF-0y0AyjPrlux53WKHiOh57ONcYzcOpdxHlMkThO6cRidDeHI_UhzHjeHuaAF2yOlaXsMgTsMgXgaeEyxIhtmTrhEpMz3Nj7m9A-JbzFMi-3lP6eA2UaHX9j5YAPh1eu9ZH9_3v5Z_6oeft_dr388VE4qMVdS2FY4rbXXjbe-dmJQ1rXYoUO_0R32G9XW_YACZasttkpo24D3dSNs3_bykn075U45PR2QZrMfaeltI6YDGdF3PQjo1YJ-fYfu0iHH0m6hOiFBaiiUOFEuJ6KMg5nyuLf5aGowyyLmtIgpi5iXRYwqJnkyUYHjI-a36A9c_wHr95EN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877230390</pqid></control><display><type>article</type><title>Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance</title><source>SpringerNature Journals</source><creator>Zhu, Xueyi ; Huang, Hezi ; Luo, Xu ; Wei, Yuanhai ; Du, Shuangling ; Yu, Jiamin ; Guo, Shengyu ; Chen, Kaiyun ; Chen, Linjiao</creator><creatorcontrib>Zhu, Xueyi ; Huang, Hezi ; Luo, Xu ; Wei, Yuanhai ; Du, Shuangling ; Yu, Jiamin ; Guo, Shengyu ; Chen, Kaiyun ; Chen, Linjiao</creatorcontrib><description>Main conclusion
Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non
-
salt secretor mangroves are involved in the compartmentation of Na
+
and osmotic regulation, contributing to their salt tolerance.
Salinity is a major abiotic stress affecting the distribution and growth of mangrove plants. The salt exclusion mechanism from salt secretor mangrove leaves is quite known; however, salt management strategies in non-salt secretor leaves remain unclear. In this study, we reported the auto-fluorescent inclusions (AFIs) specifically accumulated in mesophyll cells (MCs) of four non-salt secretor mangroves but absent in three salt secretors. The AFIs increased with the leaf development under natural condition, and applied NaCl concentrations applied in the lab. The AFIs in MCs were isolated and identified as condensed tannin accretions (CTAs) using the dye dimethyl-amino-cinnamaldehyde (DMACA), specific for condensed tannin (CT), both in situ leaf cross sections and in the purified AFIs. Fluorescence microscopy and transmission electron microscope (TEM) analysis indicated that the CTAs originated from the inflated chloroplasts. The CTAs had an obvious membrane and could induce changes in shape and fluorescence intensity in hypotonic and hypertonic NaCl solutions, suggesting CTAs might have osmotic regulation ability and play an important role in the osmotic regulation in MCs. The purified CTAs were labeled by the fluorescent sodium-binding benzofuran isophthalate acetoxymethyl ester (SBFI-AM), confirming they were involved in the compartmentation of excess Na
+
in MCs. This study provided a new view on the salt resistance
-
associated strategies in mangroves.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-023-04254-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Benzofuran ; Biomedical and Life Sciences ; Chloroplasts ; Cinnamaldehyde ; Compartmentation ; Ecology ; Fluorescence ; Fluorescence microscopy ; Forestry ; Inclusions ; Leaves ; Life Sciences ; Mangroves ; Mesophyll ; Original Article ; Plant Sciences ; Salinity tolerance ; Salt ; Salt tolerance ; Sodium ; Sodium chloride ; Tannins</subject><ispartof>Planta, 2023-11, Vol.258 (5), p.100-100, Article 100</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-32a62c999d94dad1c2f5ac6e7ecedb97e8b5618fe2e369ae6529a40dd142a8683</citedby><cites>FETCH-LOGICAL-c352t-32a62c999d94dad1c2f5ac6e7ecedb97e8b5618fe2e369ae6529a40dd142a8683</cites><orcidid>0000-0003-3516-4139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-023-04254-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-023-04254-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Xueyi</creatorcontrib><creatorcontrib>Huang, Hezi</creatorcontrib><creatorcontrib>Luo, Xu</creatorcontrib><creatorcontrib>Wei, Yuanhai</creatorcontrib><creatorcontrib>Du, Shuangling</creatorcontrib><creatorcontrib>Yu, Jiamin</creatorcontrib><creatorcontrib>Guo, Shengyu</creatorcontrib><creatorcontrib>Chen, Kaiyun</creatorcontrib><creatorcontrib>Chen, Linjiao</creatorcontrib><title>Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance</title><title>Planta</title><addtitle>Planta</addtitle><description>Main conclusion
Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non
-
salt secretor mangroves are involved in the compartmentation of Na
+
and osmotic regulation, contributing to their salt tolerance.
Salinity is a major abiotic stress affecting the distribution and growth of mangrove plants. The salt exclusion mechanism from salt secretor mangrove leaves is quite known; however, salt management strategies in non-salt secretor leaves remain unclear. In this study, we reported the auto-fluorescent inclusions (AFIs) specifically accumulated in mesophyll cells (MCs) of four non-salt secretor mangroves but absent in three salt secretors. The AFIs increased with the leaf development under natural condition, and applied NaCl concentrations applied in the lab. The AFIs in MCs were isolated and identified as condensed tannin accretions (CTAs) using the dye dimethyl-amino-cinnamaldehyde (DMACA), specific for condensed tannin (CT), both in situ leaf cross sections and in the purified AFIs. Fluorescence microscopy and transmission electron microscope (TEM) analysis indicated that the CTAs originated from the inflated chloroplasts. The CTAs had an obvious membrane and could induce changes in shape and fluorescence intensity in hypotonic and hypertonic NaCl solutions, suggesting CTAs might have osmotic regulation ability and play an important role in the osmotic regulation in MCs. The purified CTAs were labeled by the fluorescent sodium-binding benzofuran isophthalate acetoxymethyl ester (SBFI-AM), confirming they were involved in the compartmentation of excess Na
+
in MCs. This study provided a new view on the salt resistance
-
associated strategies in mangroves.</description><subject>Agriculture</subject><subject>Benzofuran</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplasts</subject><subject>Cinnamaldehyde</subject><subject>Compartmentation</subject><subject>Ecology</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Forestry</subject><subject>Inclusions</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mangroves</subject><subject>Mesophyll</subject><subject>Original Article</subject><subject>Plant Sciences</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Salt tolerance</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Tannins</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFr3DAQhUVoINs0fyAnQS-9uBlLlm0dy5KmgUAv7VlopXHWi1ZyNN7CHvLfK2cDgRxymgfzvceDx9h1Dd9rgO6GABqhKhCyWkRTqTO2qhspKgFN_4mtAIoGLdUF-0y0AyjPrlux53WKHiOh57ONcYzcOpdxHlMkThO6cRidDeHI_UhzHjeHuaAF2yOlaXsMgTsMgXgaeEyxIhtmTrhEpMz3Nj7m9A-JbzFMi-3lP6eA2UaHX9j5YAPh1eu9ZH9_3v5Z_6oeft_dr388VE4qMVdS2FY4rbXXjbe-dmJQ1rXYoUO_0R32G9XW_YACZasttkpo24D3dSNs3_bykn075U45PR2QZrMfaeltI6YDGdF3PQjo1YJ-fYfu0iHH0m6hOiFBaiiUOFEuJ6KMg5nyuLf5aGowyyLmtIgpi5iXRYwqJnkyUYHjI-a36A9c_wHr95EN</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhu, Xueyi</creator><creator>Huang, Hezi</creator><creator>Luo, Xu</creator><creator>Wei, Yuanhai</creator><creator>Du, Shuangling</creator><creator>Yu, Jiamin</creator><creator>Guo, Shengyu</creator><creator>Chen, Kaiyun</creator><creator>Chen, Linjiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3516-4139</orcidid></search><sort><creationdate>20231101</creationdate><title>Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance</title><author>Zhu, Xueyi ; Huang, Hezi ; Luo, Xu ; Wei, Yuanhai ; Du, Shuangling ; Yu, Jiamin ; Guo, Shengyu ; Chen, Kaiyun ; Chen, Linjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-32a62c999d94dad1c2f5ac6e7ecedb97e8b5618fe2e369ae6529a40dd142a8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Benzofuran</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplasts</topic><topic>Cinnamaldehyde</topic><topic>Compartmentation</topic><topic>Ecology</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Forestry</topic><topic>Inclusions</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mangroves</topic><topic>Mesophyll</topic><topic>Original Article</topic><topic>Plant Sciences</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Salt tolerance</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Tannins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xueyi</creatorcontrib><creatorcontrib>Huang, Hezi</creatorcontrib><creatorcontrib>Luo, Xu</creatorcontrib><creatorcontrib>Wei, Yuanhai</creatorcontrib><creatorcontrib>Du, Shuangling</creatorcontrib><creatorcontrib>Yu, Jiamin</creatorcontrib><creatorcontrib>Guo, Shengyu</creatorcontrib><creatorcontrib>Chen, Kaiyun</creatorcontrib><creatorcontrib>Chen, Linjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xueyi</au><au>Huang, Hezi</au><au>Luo, Xu</au><au>Wei, Yuanhai</au><au>Du, Shuangling</au><au>Yu, Jiamin</au><au>Guo, Shengyu</au><au>Chen, Kaiyun</au><au>Chen, Linjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>258</volume><issue>5</issue><spage>100</spage><epage>100</epage><pages>100-100</pages><artnum>100</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion
Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non
-
salt secretor mangroves are involved in the compartmentation of Na
+
and osmotic regulation, contributing to their salt tolerance.
Salinity is a major abiotic stress affecting the distribution and growth of mangrove plants. The salt exclusion mechanism from salt secretor mangrove leaves is quite known; however, salt management strategies in non-salt secretor leaves remain unclear. In this study, we reported the auto-fluorescent inclusions (AFIs) specifically accumulated in mesophyll cells (MCs) of four non-salt secretor mangroves but absent in three salt secretors. The AFIs increased with the leaf development under natural condition, and applied NaCl concentrations applied in the lab. The AFIs in MCs were isolated and identified as condensed tannin accretions (CTAs) using the dye dimethyl-amino-cinnamaldehyde (DMACA), specific for condensed tannin (CT), both in situ leaf cross sections and in the purified AFIs. Fluorescence microscopy and transmission electron microscope (TEM) analysis indicated that the CTAs originated from the inflated chloroplasts. The CTAs had an obvious membrane and could induce changes in shape and fluorescence intensity in hypotonic and hypertonic NaCl solutions, suggesting CTAs might have osmotic regulation ability and play an important role in the osmotic regulation in MCs. The purified CTAs were labeled by the fluorescent sodium-binding benzofuran isophthalate acetoxymethyl ester (SBFI-AM), confirming they were involved in the compartmentation of excess Na
+
in MCs. This study provided a new view on the salt resistance
-
associated strategies in mangroves.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00425-023-04254-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3516-4139</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2023-11, Vol.258 (5), p.100-100, Article 100 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2878020858 |
source | SpringerNature Journals |
subjects | Agriculture Benzofuran Biomedical and Life Sciences Chloroplasts Cinnamaldehyde Compartmentation Ecology Fluorescence Fluorescence microscopy Forestry Inclusions Leaves Life Sciences Mangroves Mesophyll Original Article Plant Sciences Salinity tolerance Salt Salt tolerance Sodium Sodium chloride Tannins |
title | Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensed%20tannin%20accretions%20specifically%20distributed%20in%20mesophyll%20cells%20of%20non-salt%20secretor%20mangroves%20help%20in%20salt%20tolerance&rft.jtitle=Planta&rft.au=Zhu,%20Xueyi&rft.date=2023-11-01&rft.volume=258&rft.issue=5&rft.spage=100&rft.epage=100&rft.pages=100-100&rft.artnum=100&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-023-04254-5&rft_dat=%3Cproquest_cross%3E2877230390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877230390&rft_id=info:pmid/&rfr_iscdi=true |